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1 System of Linear Equations

� Solutions to a system of linear equations

There are only 3 possiblilities regarding the solutions to a system of linear equations:
• No solution.
• Exactly one solution.
• Infinitely many solutions.

� Definition: Echelon Form, Reduced Echelon form, and Pivot Positions.

A leading entry of a row refers to the leftmost nonzero entry (in a nonzero row).

A rectangular matrix is in echelon form if it has the following two properties:
1. All nonzero rows are above any rows of all zeros.
2. If the leading entry of row n is in column m, then the leading entry for row n+1 must be in column m+1 or greater.

If a matrix in echelon form satisfies the following additional conditions, then it is in reduced echelon form:
1. The leading entry in each nonzero row is 1.
2. Each leading 1 is the only nonzero entry in its column.

The leading entries of a matrix in echelon form are called Pivot Positions.

� Existence and Uniqueness Theorem

• Each matrix is row equivalent to one and only one reduced echelon matrix.(†
proof in Appendix)
• A linear system is consistent iff the rightmost column of the augmented matrix is not a pivot column, that is, iff an echelon form
of the augmented matrix has no row of the form [0 ... 0 b] with b nonzero.
• If a linear system is consistent, then the solution set contains either (1) a unique solution, when there are no free variables, or (2)
infinitely many solutions, when there is at least one free variable.

by Xah: I like to see a (formal) proof of this.



2 Vectors and Matrix Equations

� Span

If aÓ1, ..., a
Ó
n are vectors in Rm and x1, ..., xn are scalars, then Span[9aÓ1, ..., a

Ó
n=] := x1 a

Ó
1 + ... + xn a

Ó
n.

Span[9aÓ1, ..., a
Ó
n=] is a subset of Rm.

If Span[9aÓ1, ..., a
Ó
n=]==R

m, we say the set of vectors 9aÓ1, ..., a
Ó
n= spans Rm.

� Definition of A.xÓ
If A is an m × n matrix, with columns aÓ1, ..., a

Ó
n, and xÓ is in Rn, then the vector A.xÓ is defined to be Úi=1

n xi a
Ó
i.

� Equivalent equations

Given an m × n matrix A, with columns aÓ1, ..., a
Ó
n and given b

Ó
 is in Rm, the following equations all denote the same thing.

• The matrix equation A xÓ � b
Ó

• the vector equation Úi=1
n xi a

Ó
i � b

Ó
 

• the system of linear equations whose augmented matrix is 9aÓ1 ... a
Ó
n b

Ó=

� Equivalent Statements

Let A be a m × n matrix. Then the following statements are logically equivalent.

• For each b in Rm, the equation A xÓ � b
Ó

 is consistent.

• The columns of A span Rm.

• A has a pivot position in every row.

By Xah: They are simply logically equivalent statements. Whether they are true is another matter. For (3), think of A as a set of
vectors, and a pivot in every row means this set contain all the basis vectors in Rm, thus it span Rm. It is not sufficient if A has a

pivot position in every column. Example: aÓ1 := {1,0,0}, aÓ2 := {0,1,0} does not span R3.

� Distribution Property of Vectors

If A is an m × n matrix, uÓ and vÓ are vectors in Rn, and c is a scalar, then

• A IuÓ + v
ÓM � A u

Ó
+ A v

Ó
• A Ic uÓM � c IA uÓM

� A Theorem on Homogeneous Equation

A system of linear equations is said to be homogeneous if it can be written in the form A xÓ � 0
Ó

. The homogeneous system

A x
Ó

� 0
Ó

 has a nonzero solution iff the system has at least one free variable.

by Xah: This is so because a consistant system either has one unique solution or infinite number of solutions. For the latter, there must be a free variable.

Suppose the equation A xÓ � b
Ó

 is consistent for some given b, and let pÓ be a solution. Then the solution set of A xÓ � b
Ó

 is the

set of all vectors of the form pÓ + v
Ó
h where vÓh is any solution of the homogeneous equation A xÓ � 0

Ó
.
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Suppose the equation A xÓ � b
Ó

 is consistent for some given b, and let pÓ be a solution. Then the solution set of A xÓ � b
Ó

 is the

set of all vectors of the form pÓ + v
Ó
h where vÓh is any solution of the homogeneous equation A xÓ � 0

Ó
.

Proof by Xah: We have

A p
Ó

� b
Ó

 and A vÓh � 0
Ó

A p
Ó

+ A v
Ó
h � b

Ó
+ 0

Ó
� b

Ó
A IpÓ + v

Ó
hM � b

Ó
thus IpÓ + v

Ó
hM is a solution to A xÓ � b

Ó
 .

Now we show that there can be no solution other than IpÓ + v
Ó
hM. Suppose cÓ is a solution to A xÓ � b

Ó
. Then

A c
Ó

� b
Ó

A c
Ó

- A p
Ó

� b
Ó

- b
Ó

� 0
Ó

A IcÓ - p
ÓM � 0

Ó
This shows that IcÓ - p

ÓM � v
Ó
h for some vÓh 

IcÓ - p
ÓM � v

Ó
h 

c
Ó

� v
Ó
h + p

Ó
End of proof.

� Definition of Linearly Dependence

A set of vectors 9aÓ1, ..., a
Ó
n= in vector space V is said to be linearly independent if the vector equation

Úi=1
n xi a

Ó
i�0

Ó
has only the trivial solution xÓ � 0

Ó
. Otherwise, the set is said to be linearly dependent.

� Characterization of Linearly Dependent Sets

• A set S := 9aÓ1, ..., a
Ó
n= of two or more vectors is linearly dependent iff at least one of the vectors in S is a linear combina-

tion of the others.

• Any set 9aÓ1, ..., a
Ó
n= in Rm is linearly dependent if n > m.

• If a set S := 9aÓ1, ..., a
Ó
n= in Rm contains the zero vector, then the set is linearly dependent.

Problem: Given a set of vectors with one element a linear combination of others. How to determine which one and its linear
combination? In general, given a set of vectors, how to determine which vector can be written as a linear combination of which
vectors, and which cannot.

Solution:
Solve the equation

x1 a
Ó
1 + ... + xn a

Ó
n � 0

Ó
then isolate any term aÓk  to one side shows its dependence relationship. If xÓk � 0

Ó
, then it shows the vector aÓk  is not a linear

combination of other vectors in the set. If xÓk � 0
Ó

 for all k, it agrees with the definition of linearly independent set, no vector is a

linear combination of other vectors.

2.5 Intro to Linear Transformation
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2.5 Intro to Linear Transformation

� Linear Transformation

A transformation (or mapping) T is linear if

• TAuÓ + v
ÓE � T@uÓD + T@vÓD for all uÓ, vÓ in the domain of T.

• TAc uÓE � c T@uÓD for all uÓ and all scalars c.

Theorem: For any linear transformation T, T@0ÓD � 0
Ó

. 

(this does not mean that T@aÓD ¹ 0
Ó

 for any aÓ ¹ 0
Ó

.

� Stardard Matrix of Linear Transformation

Let T: Rn ® R
m be a linear transformation. Then there exists a unique matrix A such that

T@xÓD � A x
Ó for all xÓ in Rn, and

A � 9T@eÓ1D, ..., T@eÓnD=
where eÓi is the ith column of of the identity matrix I n.

A is called the standard matrix for the linear transformation T.

(Proof in D.C.Lay 2.6 p.80. Good.)
With this theorem, we could say that every linear transformation from Rn to Rm is a matrix transformation, and it's easy to prove

that every matrix transformation is linear (see D.C.Lay 2.2 p.52. The one-to-one correspondence of A xÓ and T[x] is indicated in

the book also. see 2.6, excercise 33, p.85. Easy.)

Note, in this theorem, one may think it will have problems when n ¹ m. Not so. Because note that T[e] will return a vector in
dimension m.

� Onto and one-to-one mapping

• A mapping T:Rn ® R
m is said to be onto Rm if each b

Ó
 in Rm is the image of at least one xÓ in Rn.

• A mapping T: Rn ® R
m is said to be one-to-one if each b

Ó
 in Rm is the image of at most one xÓ in Rn.

Let T: Rn ® R
m be a linear transformation and let A be the standard matrix for T. Then,

• T maps Rn onto Rm iff the columns of A span Rm.

• T is one-to-one iff the columns of A are linearly independent.

3 Matrix Algebra

3.1 Matrix Operations

� Multiplication of Matrices

If A is an m × n matrix, and if B is an n × p matrix, then

A Ä B := 9A bÓ1, ..., A b
Ó
p=.

Motivaton for the definition:

We want the product AÄB to have the property HABL x
Ó

� A IB xÓM.

Now,
A.IB.xÓM � A.IÚi=1

p
xi b

Ó
iM � Úi=1

p
A.Ixi bÓiM � Úi=1

p Ixi I A.b
Ó
iMM

Note that A[x]+A[y]==A[x+y].
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Motivaton for the definition:

We want the product AÄB to have the property HABL x
Ó

� A IB xÓM.

Now,
A.IB.xÓM � A.IÚi=1

p
xi b

Ó
iM � Úi=1

p
A.Ixi bÓiM � Úi=1

p Ixi I A.b
Ó
iMM

Note that A[x]+A[y]==A[x+y].

The power of A is defined by

Ak := I * Product@A, 8n<D, in particular A0�I.

By the definition of matrix multiplication, it follows that the
ith row of (A B)==(ith row of A) times (the matrix B)

Note that the (ith row of A) is a 1 by n matrix.

� Transposition of Matrices

The transpose of A is the n × m matrix, denoted by AT, whose columns are the corresponding rows of A.

Note: We can also define Transpose as follows: The transpose of a n × m matrix A is a m × n matrix AT  such that Dot[A xÓ,

y]==Dot[AT y, xÓ]. For example, suppose we have A := {{a,b},{c,d}}. Then Dot[A xÓ, y] is then 

(a x1 + b x2) y1 + (c x1 + d x2) y2

To evalute Dot[AT y, xÓ], we note that it differs from Dot[A xÓ, y] only by the position of the pairs {b,c}, {x1,y1}, {x2,y2} in the

final product. So make a switch to get 
(a y1 + c y2) x1 + (b y1 + d y2) x2
Both of them expands to
a x1 y1 + c x1 y2 + b x2 y1 + d x2 y2

This can be expressed and tested in Mathematica as

Clear@n, m, A, vx, vyD;
8n, m< = 83, 5<;
A = Table@Random@Integer, 81, 9<D, 8n<, 8m<D;
vx = Table@ToExpression@"x" <> ToString �iD, 8i, m<D;
vy = Table@ToExpression@"y" <> ToString �iD, 8i, n<D;
HA.vxL.vy - HTranspose �A.vyL.vx �� Simplify

0
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� Properties of Matrix Multiplication

Let A be m × n matrix and let B and C have sizes for which the indicated sums and products are defined. Let r be any scalar.
1. A (B C)==(A B) C
2. A (B + C)==A B + A C
3. (B + C) A==B A + C A
4. r (A B)==(r A) B==A (r B)
5. Im ** A � A � A ** In 

6. HATLT
== A

7. HA + BLT == AT + BT

8. Hr ALT == r AT

9. HA BLT == BT AT

Proofs in D.C.Lay 3.1. Need to see the proof of 9.

My theorem: 
Let A be a square matrix and D be a triangular matrix (a matrix with diagonal values and rest zero.)
A D==(D AT)^T.

D A==(AT D)^T

Note, D is a diagonal matrix. The difference of A D and D A is that D A is like A D except the D comes from above A instead of
on the right. Thus it is equals to D AT, but we need to transpose them back, so the theorem is A D==(D AT)^T.

3.2 The Inverse of a Matrix

� Inverse of a Matrix

Let A denote a matrix. The inverse of A is a matrix (written as A-1) such that

A ** A-1 == A-1 ** A == I

If A-1 exists, then we say that A is invertible.

� inverse of 2x2 matirx

Let A := {{a,b},{c,d}}. If a d - b c==0, then A is not invertible, otherwise A is invertible and

A-1==1/(a d - b c) {{d,-b},{-c,a}}

My Proof:
Suppose the column vectors in A are linearly dependent, so that

a==r b
c==r d

for some r. Eliminate r we get a d - b c==0. So if this is true, then column vectors in A are linearly dependent, thus it A has no
inverse. If a d - b c != 0, then the column vectors are not linearly dependent, so a inverse exist. In particular, it means the follow-
ing two systems has solution:

a x1 + b x2==1
c x1 + d x2==0

and 

a y1 + b y2==0
c y1 + d y2==1

We solve them by algebra to complete the proof.
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My Proof:
Suppose the column vectors in A are linearly dependent, so that

a==r b
c==r d

for some r. Eliminate r we get a d - b c==0. So if this is true, then column vectors in A are linearly dependent, thus it A has no
inverse. If a d - b c != 0, then the column vectors are not linearly dependent, so a inverse exist. In particular, it means the follow-
ing two systems has solution:

a x1 + b x2==1
c x1 + d x2==0

and 

a y1 + b y2==0
c y1 + d y2==1

We solve them by algebra to complete the proof.

Question: Is there a square matrix M or N such that M A==AT or A N==AT for any square matrix A?

Answer: Not always, for example the matrix A=={{0,1},{0,0}}. If M or N exists, then

M==AT A-1, N==A-1 AT. 

End of example.

Question: We may think of transposition as a transformation of a one-to-one function of matrix, and the fixed point of this
transformation is all the identity matrices. What is the geometric significance of transposition?

To Do:
1) Show that identity matrix is unique. i.e. if E A==A or A E==A, then E==I.
2) Show, or find an example such that M B==N B, but M != N; B M==B N but M != N.
3) Show that for any matrix A, C such that A C==I, then C A==I.

� Theorem of Inverses

• If A is an invertible n × n matrix, then for each b in Rn, the equation A xÓ � b
Ó

 has the unique solution xÓ==A-1 b.

• If A is an invertible matrix, then

 1. (A-1)^-1==A

 2. (AT)^-1==(A-1)^T 

• If A and B are n × n invertible matrices, then (A B) is also invertible, and (A B)^-1==B-1 A-1 

• An n × n matrix A is invertible iff A is row equivalent to In, and in this case, any sequence of elementary row operations that

reduces A to In also transforms In to A-1.

To Do: Read the proof of this.

My proof of one of the above (the rest is in the book):

 (AT)^-1==IA-1MT
 

 HATL HATL-1
� HATL IA-1MT

 I==(AT) (A-1)^T 

 I^T==((AT) (A-1)^T)^T 

 I==((A-1)^T)^T (AT)^T 

 I==I
(this proof may be wrong, because it assumed (AT)^-1 exist outright.)
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My proof of one of the above (the rest is in the book):

 (AT)^-1==IA-1MT
 

 HATL HATL-1
� HATL IA-1MT

 I==(AT) (A-1)^T 

 I^T==((AT) (A-1)^T)^T 

 I==((A-1)^T)^T (AT)^T 

 I==I
(this proof may be wrong, because it assumed (AT)^-1 exist outright.)

3.3 Characterizations of Invertible Matrices

� The Invertible Matrix Theorem

Let A be a square n × n matrix. The following statements are equivalent.
• A is an invertible matrix.
• A is row equivalent to the n × n identity matrix.
• A is a product of elementary matrices.

• The equation A xÓ � 0
Ó

 has only the Zero-solution.

• The equation A xÓ � b
Ó

 has at least one solution for any b in Rn. The equation A xÓ � b
Ó

 has a unique solution for any b

in Rn.

• The columns of A form a linealy independent set.
• The columns of A span Rn.

• The linear transformation T[x] := A xÓ: Rn ® R
n is one-to-one and onto.

• There is an n × n matrix C such that A C==I.
• There is an n × n matrix D such that D A==I.
• AT is an invertible matrix.

• The columns of A forms a basis of Rn.

• Col[A]==R
n.

• Dim[Col[A]]==n.
• Rank[A]==n

• Nul[A]=={0
Ó

}.

• Dim[Nul[A]]==0.
• The number 0 is not an eigenvalue of A.
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5 Vector spaces

5.1 Vector Spaces and Subspaces

� Vector Space definition

A Vector Space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplica-

tion by scalars (real or complex), subject to the ten axioms listed below. The axioms must hold for all vectors uÓ, v
Ó, and wÓ in V

and for all scalars c and d.

1. The sum of uÓ and vÓ, denoted by uÓ + v
Ó, is in V.

2. u
Ó

+ v
Ó

� v
Ó

+ u
Ó.

3. IuÓ + v
ÓM + w

Ó
� u

Ó
+ IvÓ + w

ÓM.

4. There is a Zero vector 0
Ó

 in V such that uÓ + 0
Ó

� u
Ó.

5. For each uÓ in V there is a vector -uÓ in V such that uÓ + I-u
ÓM == 0

Ó
.

6. The scalar multiple of uÓ by c, denoted by c uÓ, is in V.

7. c IuÓ + v
ÓM == c u

Ó
+ c v

Ó.

8. Hc + dL u
Ó

== c u
Ó

+ d u
Ó.

9. c Id uÓM == c dM u
Ó.

10. 1 u
Ó

� u
Ó.

� Alternative definition of a vector space

Let K be a division ring. A vector space over K is an ordered triple {E,+,.} such that {E,+} is an abelian group and . is a function
from K × E into E satisfying

• c.IuÓ + v
ÓM � c.u

Ó
+ c.v

Ó
• Hc + dL.uÓ � c.u

Ó
+ c.v

Ó
• Hc * dL.uÓ � c.Id.uÓM
• 1.uÓ � u

Ó
for all uÓ, vÓ Î E and all c, d Î K. Elements of E are called vectors, elements of K are called scalars, and . is called scalar multipli-

cation.

Similarly, {R
n,+,.} is a vector space over R for each n Î N.

� Corollaries

The zero vector 0
Ó

 in any vector space is unique, and the vector -uÓ is unique for each uÓ in V, and 

1. 0*uÓ==0
Ó

 

2. c*0
Ó

==0
Ó

 

3. -uÓ==(-1)*uÓ 

My Proof of -u==(-1)*u.

0
Ó

==0 u (corollary 1)

0 u==(1-1) u (property of arithmetic)
(1-1) u==1 u + (-1) u by axiom 8.
1 u + (-1) u==u + (-1) u by axiom 10. Connection previous equation to get

u + (-1) u==0
Ó

 

(-u) + u + (-1) u==0
Ó

 + (-u) Add (-u) to both sides.

0
Ó

 + (-1) u==-u by axiom 4 and 5.

(-1) u==-u 
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My Proof of -u==(-1)*u.

0
Ó

==0 u (corollary 1)

0 u==(1-1) u (property of arithmetic)
(1-1) u==1 u + (-1) u by axiom 8.
1 u + (-1) u==u + (-1) u by axiom 10. Connection previous equation to get

u + (-1) u==0
Ó

 

(-u) + u + (-1) u==0
Ó

 + (-u) Add (-u) to both sides.

0
Ó

 + (-1) u==-u by axiom 4 and 5.

(-1) u==-u 

� Subspace of a Vector Space

A subspace of a vector space V is a subset H of V such that H is itself a vector space under the same operations of addition and
scalar multiplication that are already defined on V.

� Subspace Test

A subset H of of vector space V is a subspace of V iff the following conditions are all satisfied:
1. The Zero vector of V is in H.

2. If uÓ and vÓ are in H, then uÓ + v
Ó is in H.

3. If uÓ is in H and c is any scalar, then c uÓ is in H.

� Spanning Set and Subspace

Given aÓ1, ..., a
Ó
n in a vector space V, the set Span[9aÓ1, ..., a

Ó
n=] is a subspace of V.

We call Span[9aÓ1, ..., a
Ó
n=] the subspace generated by 9aÓ1, ..., a

Ó
n=. Given any subspace H of V, a spanning set for H

is a set 9aÓ1, ..., a
Ó
n= in H such that H==Span[9aÓ1, ..., a

Ó
n=].

5.2 Null Spaces, Column Spaces, and Linear Transformations

� Null Space

Given an m × n matrix A, the null space of A (denoted Nul[A]) is the set of all solutions to the homogeneous equation A.xÓ � 0
Ó

.

In set notation,

Nul[A] := {xÓ: xÓ is in Rn and A.xÓ � 0
Ó

}

Nul[A] is the set of all xÓ in Rn that are mapped into the zero vector of Rm by the linear transformaiton A.xÓ.

� Column Space

Given an m × n matrix A, the column space of A (denoted Col[A]) is the set of all linear combinations of the columns of A. In set
notation,

Col[A] := {b
Ó

: b
Ó

 is in Rm and b
Ó

� A.x
Ó for some xÓ in Rn}

Column space is just the range of a linear transformation.

The null space of an m × n matrix A is a subspace of Rn.

The column space of an m × n matrix A is a subspace of Rm.
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The null space of an m × n matrix A is a subspace of Rn.

The column space of an m × n matrix A is a subspace of Rm.

When talking about linear transformation, null space and column space are often called kernel and range respectively. Kernel is

the set of xÓ such that T[x]==0
Ó

, and range has the usual meaning for a function -- all possible outputs.

5.3 Linearly Independent Sets; Bases

� definition: Linearly Independence

A Set 9vÓ1, ..., v
Ó
n= of two or more vectors, with vÓ1 ¹ 0

Ó
, is linearly dependent iff some vÓj (with j > 1) is a linear combina-

tion of the preceding vectors.

We require vÓ1 ¹ 0
Ó

 because, suppose we have an ordered set S := 90Ó, u
Ó=. This is a linearly dependent set by definition, but

there are no vÓj (with j > 1) that is a linear combination of the preceding vectors, vÓ1, ..., v
Ó
j-1; in other words, uÓ ¹ c 0

Ó
. On

the other hand, if S := 9uÓ, 0
Ó=, we have 0

Ó
� 0 u

Ó, thus showing S is linearly dependent as the theorem dictates.

Question: why can't the definition be that "there are no vector that is a linear combination of two or more vectors in the set?"

� definition: Basis of a Vector Space

Let H be a subspace of a vector space V. Let B be a set of vectors in V. B is a basis for H if
1. B is a linearly independent set.
2. the subspace spanned by B is equal to H.

Note: the set {0
Ó

} do not have a basis because {0
Ó

} is dependent by definition.

• Let eÓ1, ..., e
Ó
n be the columns of the n × n identity matrix In. The set 9eÓ1, ..., e

Ó
n= is called the standard basis for Rn.

� The Spanning Set Theorem

Let S := 9vÓ1, ..., v
Ó
n= be a set in vector space.

• Suppose vÓk in S is a linear combination of the remaining vectors, and S2 is a set formed by removing the element vÓk from S,

then Span[S]==Span[S2].

• If Span[S] ¹ {0
Ó

}, some subset of S is a basis for Span[S].

Note: S do not have a basis if S := {0
Ó

}. That's why we require Span[S]¹{0
Ó

} in the theorem.

� Basis of Col[A]

The pivot columns of a matrix A forms a basis for Col[A].

The following theorem is "my own". It's incomplete. I need to complete the theorem statement and proof.

Let V and W be vector spaces, let T: V ® W be a linear transformation, and let S:=9vÓ1, ..., v
Ó
k= be a subset of V, and

S2:=9T@vÓ1D, ..., T@vÓkD=.

• If S is linearly dependent in V, then S2 is linearly dependent in W.

• If S2 is linearly independent in V, then S is linearly dependent in W. ???

If T is one-to-one transformation, then
• S is linearly dependent iff S2 is linearly dependent.

• S is lineary independent iff S2 is linearly independent.

linearAlgebraNotes.nb  11



Let V and W be vector spaces, let T: V ® W be a linear transformation, and let S:=9vÓ1, ..., v
Ó
k= be a subset of V, and

S2:=9T@vÓ1D, ..., T@vÓkD=.

• If S is linearly dependent in V, then S2 is linearly dependent in W.

• If S2 is linearly independent in V, then S is linearly dependent in W. ???

If T is one-to-one transformation, then
• S is linearly dependent iff S2 is linearly dependent.

• S is lineary independent iff S2 is linearly independent.

My Proof:
Suppose S is linearly dependent. Whether S2 is linearly dependent depends on whether c1==c2==...==ck==0 is the only solution
to the equation

c1 T[v1] + c2 T[v2] +... + ck T[vk]==0
Ó

 iff

T[c1 v1] + T[c2 v2] +... + T[ck vk]==0
Ó

 iff

T[c1 v1 + c2 v2 +... + ck vk]==0
Ó

 iff

(c1 v1 + c2 v2 +... + ck vk==0
Ó

 or T[b]==0
Ó

 for some b ¹ 0
Ó

)

The theroems above easily follows from here.

A vector equation of the form c1 v1 + c2 v2 +... + ck vk==b has either one solution, infinitely many solution, or no solution. Need
to see a proof. To Do.

5.4 Coordinate Systems

� theorem: The Unique representation

Let  B  :=  :b1, b2, ..., bn>  be  a  basis  for  a  vector  space  V.  Then  for  each  xÓ  in  V,  there  exists  a  unique  set  of  scalars

c1, ..., cn, such that xÓ � c1 b
Ó
1 + ... + cn b

Ó
n.

Proof:
Suppose there are two representations x == Sum[ci*bi,{i,n}] and x == Sum[di*bi,{i,n}].
Subtract the equations we have

zeroVector == Sum[(ci-di)*bi,{i,n}]
Since all bi are linearly independent, thus all (ci-di) must be 0, which means ci==di for all i.

� Definition: Coordinates

Suppose the set B := :b1, b2, ..., bn> is a basis for V and xÓ is in V. The Coordinates of xÓ relative to the basis B are the weights

c1, ..., cn such that xÓ � c1 b
Ó
1 + ... + cn b

Ó
n.

� x
Ó

# 8xÓ<
B
 is one-to-one and onto

Let B := 9bÓ1, ..., b
Ó
n= be an ordered basis for a vector space V. Then the coordinate mapping xÓ # 8xÓ<

B
 is a one-to-one

linear transformation from V onto Rn.

5.5 The Dimension of a Vector Space
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5.5 The Dimension of a Vector Space

� Number of Vectors in Basis

• If a vector space V has a basis B:=9bÓ1, ..., b
Ó
n=, then any set in V containing more than n vectors must be linearly depen-

dent.
• If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

� Dimension of V

If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as dim[V], is the number

of vectors in a basis for V. The dimension of zero vector space {0
Ó

} is defined to be zero. If V is not spanned by a finite set, then

V is said to be infinite-dimensional.

� Linear Dependence, Span, Dimension and Basis

• Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to
a basis for H. Also, H is finite-dimensional and dim[H] £ dim[V].
• Let V be an n-dimensional vector space, n ³ 1, and let S be a subset of V that contains exactly n elements. Then:
* If S is linearly independent, then S is a basis for V.
* If S spans V, then S is a basis for V.

The dimension of Nul[A] is the number of free variables in the equation A .xÓ � 0
Ó

, and the dimension of Col[A] is the number of

pivot columns in A.

5.6 Rank

� Basis for Row Spaces

If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzore rows of B
form a basis for the row space of A as well as B.

� Rank 

The rank of A is the dimension of the column space of A.
The dimensions of the column space and the row space of an m × n matrix A are equal. This common dimension, the rank of A,
also equals the number of pivot positions in A and satisfies the equation

Rank[A] + Dim[Nul[A]]==n
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6 Eigenvectors and Eigenvalues

6.1 Eigenvectors and Eigenvalues

� Eigenvector and Eigenvalue

An eigenvector of an n × n matrix A is a nonzero vector xÓ such that A.xÓ � Λ * x
Ó for some scalar Λ. A scalar Λ is called an

eigenvalue of A if there is a vector xÓ ¹ 0
Ó

 such that A.xÓ � Λ * x
Ó; such an xÓ is called an eigenvector corresponding to Λ.

Eigenspace:
Suppose A.xÓ � Λ x

Ó, then
A.x

Ó
- Λ x

Ó
� 0

Ó
HA - Λ IL.xÓ � 0

Ó
The null space of (A-Λ I) is called the eigenspace of A corresponding to Λ.

� triangular matrix and eigenvalue

Let A be a triangular matrix. Then the eigenvalues of A are the entries on its main diagonal.

Proof is easy. Look at the matrix (A-Λ*I). The column vectors in this matrix must be linearly independent, and the only way is for
Λ to equal to some of the diagonal entries.

� Linear independence of engine vectors

If vÓ1, ..., v
Ó
r  are eigenvectors that correspond to distinct eigenvalues Λ1, ..., Λr  of an n × n matrix A, then the set

9vÓ1, ..., v
Ó
r= is linearly independent.

Proof:

If 9vÓ1, ..., v
Ó
r= is linearly dependent, then there is a least index p such that vÓp+1 is a linear combination preceding (linearly

independent) vectors, and there exist scalars c1, ..., cn such that

Úi=1
p

ci v
Ó
i == v

Ó
p+1 (*5*)

Multiplying both sides by A and using the fact that A.vÓk == Λk v
Ó
k for each k, we obtainÚi=1

p
ci A.v

Ó
i == A.v

Ó
p+1

Úi=1
p

ci Λi v
Ó
i == Λp+1 v

Ó
p+1 (*6*)

Multiplying both sides of (*5*) by Λp+1 and subtracting the result from (*6*), we have

Úi=1
p

ci IΛi - Λp+1M v
Ó
i == 0

Ó
(*7*)

Since 9vÓ1, ..., v
Ó
p= is linearly independent, the weights in (*7*) are all zero. But none of the factors IΛi - Λp+1) are zero,

because the eigenvalues are distinct. Hence ci==0 for i=1,...,p. But then (*5*) says that vÓp+1 � 0
Ó

, which is impossible. Hence

9vÓ1, ..., v
Ó
r= cannot be linearly dependent and therefore must be linearly independent.

6.2 The Characteristic Equation
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6.2 The Characteristic Equation

� Determinant

One way to define determinants is as follows: For an n × n matrix. We row reduce it to echelon form using the following meth-
ods: 
* Replace a row by the linear combination of other rows.
* Interchange a row with another row.
(in particular, scaling of a row by itself is not allowed.)
The determinants of A is the product of the diagonal entries times H-1Lr, where r is the number of times we interchanged rows.

If the matrix is not invertible, it will contain a 0 in its diagonal, and thus the determinant will be 0.

If A is a 3 × 3 matrix, then Abs[Det[A]] is the volume of the parallelepiped defined by the column vectors of A.

� Properties of Determinants

Let A and B be an n × n matrices.
• A is invertible iff Det[A] ¹ 0
• Det[A.B]==Det[A]*Det[B]
• Det[AT]==Det[A]

• If A is triangular, then Det[A] is the product of the entries on the main diagonal of A.
• A row replacement operation on A does not change the determinant. A row interchange changes the sign of the determinant. A
row scaling also scales the determinant by the same scalar factor.

Proofs in D.C.Lay, chapter 4.

� characteristic polynomial

The scalar equation Det[A - Λ*I]==0 is called the characteristic equation of A.

A scalar Λ is an eigenvalue of an n × n matrix A iff Λ satisfies the characteristic equation Det[A - Λ I]==0.

This is so because:
A.x==Λ*x
A.x-Λ*x==0
A.x-Λ*I.x==0
(A-Λ*I).x==0.

� similar matrixes

If A and B are n × n matrices, then A is similar to B if there is an invertible matrix P such that P-1.A.P � B. (which implies

A==P.B.P^-1)

Xah's note: I think: in group theory, this idea is called conjucate class. i.e. two elements a and b are in the same conjucate class if
there exist an element p, such that p^-1*a*p==b.

� theorem: similar matrixes has the same eigensystem
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�

theorem: similar matrixes has the same eigensystem

If n × n matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues.

Proof: If B==P-1.A.P, then

B - Λ * I==P-1.A.P - Λ * P-1.P==P-1.(A.P-Λ*P)==P-1.(A-Λ*I).P

using the multiplicative property of determinants, we have

Det[B-Λ*I]==Det[P-1.(A-Λ*I).P]==Det[P-1]*Det[(A-Λ*I)]*Det[P]==Det[P-1]*Det[P]*Det[(A-Λ*I)]==Det[P-1.P]*Det[(A-Λ*I)]

==Det[(A-Λ*I)]

Some common algorithms for estimating the eigenvalues of a matrix is based on the above theorem. They include QRDecomposi-
tion and Jacobi's method. See p.287 of David C.Lay.

� Diference equations and dynamic systems

Eigensystem is the key to difference equations and dynamic systems. For example, we are given the vector sequence

f[0]:=aÓ
f[n]:=A.f[n-1]

This sequence can be written as

f@nD := An.a
Ó

One  can  avoid the  multiplication of  matrices  by using eigensystems. Suppose  A  is  2  ×  2  and  we  have  the  eigensystems

98Λ1, Λ2<, 9uÓ1, u
Ó
2==.

Remember that A^n.x==Λ^n.x for eigensystem Λ and x.

Write aÓ in terms of eigenvectors (this can be done since the eigenvectors forms a basis). Suppose we have aÓ == c1 u
Ó
1 + c2 u

Ó
2

Now, f@nD == An.a
Ó

== An.Ic1 uÓ1 + c2 u
Ó
2M == c1 An.u

Ó
1 + c2 An.u

Ó
2 == c1 Λ1

n u
Ó
1 + c2 Λ2

n u
Ó
2

thus

f@nD == c1 Λ1
n u

Ó
1 + c2 Λ2

n u
Ó
2

This is a closed form of f[n]. The closed form facilitate computation and analysis of the behavior of f[n]. We may use it to find
Limit[f[n],n->Infinity].

6.3 Diagonalization

� definition: Diagonalization

A square matrix A is said to be diagonable if A is similiar to a diagonal matrix, that is, if A==P.D.P^-1 for some invertible matrix
P and some diagonal matrix D.
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� theorem: Diagonalization

An n × n matrix A is diagonalizable iff A has n linealy independent eigenvectors.
If A==P.D.P^-1 where D is diagonal, then the diagonal entries of D are eigenvalues of A and the columns of P are the correspond-
ing eigenvectors.

Proof:
Let u1, u2,... be independent eigenvectors of A, and Λ1, Λ2,... be the corresponding eigen values.
We have

[A.u1 A.u2 ...]==[Λ1*u1 Λ2*u2 ...] (*1*)
which can be rewriten as

A.P==P.D
by the given definition of matrix P and D. Since ui are independent, P^-1 exist. Right multiply both sides by P^-1 we have

A==P.D.P^-1
This proves the half of first part of the theorem. Now, if given A==P.D.P^-1 for some P, D, we can use (*1*) to show that
A.ui==ci*ui by equating columns. Now, since ui for all i are independent and none are zero vectors, it shows that ci are eigenval-
ues corresponding to the eigenvectors ui.
The second part of the theorem is also proven in the process.
End of proof.

� theorem

Let A be an n × n matrix whose distinct eigenvalues are Λ_1,...,Λ_p. For k:=1,...,p, let B_k be a basis for the eigenspace corre-
sponding to Λ_k. Let B be the union of B_1,...,B_p. Then B is linearly independent.

Notes: recall that eigenspace of an eigenvalue Λ is defined to be all eigenvectors that has Λ as their eigenvalue. That is to say, an
eigenvalue may have more than one linearly independent eigenvectors. The theorem does not say an n × n matrix will always
have n eigenvectors. If only says that if A has n linearly independent eigenvectors, then A is diagonalizable.

Proof: (need editing)
Suppose Λ_1,...,Λ_n are the distinct eigenvalues of matrix A. Suppose B_i are eigenvector bases corresponding to Λ_i and each
B_i has dimensions Length[B_i].
Let s_i be :=Sum[c_i_j*B_i[[j]],{j,Length[B_i]}].
surfeit to say that if Sum[s_i,{i,n}]==zeroVector, then s_i==0 for all i. This is so because eigenspace of different eigenvalues has
no intersection. Thus, the above implies all c_i_j==0 in

Sum[c_i_j*B_i[[j]],{j,Length[B_i]}]==zeroVector
Which inplies all c_i_j==0 in

Sum[(c_i_j*B_i[[j]]),{i,n},{j,Length[B_i]}]==zeroVector
Thus B is linearly independent.
--------------------------------
are all zero.
We know that c_j==0 in Sum[(c_j),B_i[[j]],{j,n}]==zeroVetor.

Sum[Sum[(c_i_j*B_i[[j]]),{j,Length[B_i]}],{i,n}]

Suppose b_i_m is an eigenvector in B_i.

Sum[Plus@@(c_i_j*B_i),{i,n}]==zeroVector
and all c_i_j must be zero.
This means each of Plus@@(c_i_j*B_i)==zeroVector.
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Proof: (need editing)
Suppose Λ_1,...,Λ_n are the distinct eigenvalues of matrix A. Suppose B_i are eigenvector bases corresponding to Λ_i and each
B_i has dimensions Length[B_i].
Let s_i be :=Sum[c_i_j*B_i[[j]],{j,Length[B_i]}].
surfeit to say that if Sum[s_i,{i,n}]==zeroVector, then s_i==0 for all i. This is so because eigenspace of different eigenvalues has
no intersection. Thus, the above implies all c_i_j==0 in

Sum[c_i_j*B_i[[j]],{j,Length[B_i]}]==zeroVector
Which inplies all c_i_j==0 in

Sum[(c_i_j*B_i[[j]]),{i,n},{j,Length[B_i]}]==zeroVector
Thus B is linearly independent.
--------------------------------
are all zero.
We know that c_j==0 in Sum[(c_j),B_i[[j]],{j,n}]==zeroVetor.

Sum[Sum[(c_i_j*B_i[[j]]),{j,Length[B_i]}],{i,n}]

Suppose b_i_m is an eigenvector in B_i.

Sum[Plus@@(c_i_j*B_i),{i,n}]==zeroVector
and all c_i_j must be zero.
This means each of Plus@@(c_i_j*B_i)==zeroVector.

6.4 Eigenvectors and Linear Transformation

� theorem: Diagonal Matrix Representation

Suppose A:=P.D.P^-1, where D is a diagonal x × n matrix. If B is the basis for Rn formed from the columns of P, then D is the B-

matrix of the transformation xÓ # A.x
Ó.

Proof: (verbatim from the book. Needs editing.)
Denote the columns of P by b_1,...,b_n, so that B={b_1,...,b_n}, and P=[b_1 ... b_n]. In this case P is the change-of-coordinates
matrix P_B discussed in Section 5.4, where
P[X]_B == x and [x]_B==(P^-1).x
If T[x]==A.x for x in R^n, then
[T]_B==[[T[b_1]]_B ... [T[b_n]]_B]
==[[A.b_1]_B ... [A.b_n]_B]
==[(P^-1).A.b_1 ... (P^-1).A.b_n]
==(P^-1).A.[b_1 ... b_n]
==(P^-1).A.P

Since A==P.D.(P^-1), we have [T]_B==(P^-1).A.P==D.

6.5 Complex Eigenvalues

linear map of an abstract vector space (xah's note)

To define a linear map T, we don't have to know the image of every element in V. We only need to know the image of a set of
vectors that is a basis for V. This is so because the property of linear map that L[a+b]==L[a]+L[b] and L[Α*a]==Α*L[a]. In
particular, every vector can be written as linear combinations of the basis vectors, thus we can find their image. (Greek letter
denote scalars.)

It is extremely convenient to find the isomorphism between an abstract linear space and the linear space in R^n, because the latter
can be computed more easily, and linear map can be written as matrixes.

The following describes the method of finding an isomophic vector space in R^n from a given abstract vector space.
Given a n dimentional linear space {V,+,*} over R^1. Suppose B is a basis. A linear mapping T is defined by specifying the
images of basis vectors. i.e., we know the value of T[b[k]] for 1<=k<=n. Let us use B as the coordinate basis. We want to find the
matrix A corresponding to T. Let {b[k]} denote the coordinates of b[k] with respect to basis B. Let {e[k]} denote the standard
basis,  that  is:  {e[1]}=={1,0,0,0,...},  {e[2]}={0,1,0,0,...},  etc.  The  coordinates  of  b[k]  with  respect  to  B  is  {e[k]},  i.e.
{b[k]}=={e[k]}.
Now, the coordinates of T[{b[k]}] can be denoted as {T[{b[k]}]}.
Let x be a vector in R^n. x[i] be its ith coordinates. We can write x as Sum[x[i]*{e[i]},{i,1,n}]. Now,

T[x]==T[Sum[x[i]*{e[i]},{i,1,n}]]==Sum[x[i]*T[{e[i]}],{i,1,n}]
Thus we see that kth column of matrix A is {T[{b[k]}]}.
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The following describes the method of finding an isomophic vector space in R^n from a given abstract vector space.
Given a n dimentional linear space {V,+,*} over R^1. Suppose B is a basis. A linear mapping T is defined by specifying the
images of basis vectors. i.e., we know the value of T[b[k]] for 1<=k<=n. Let us use B as the coordinate basis. We want to find the
matrix A corresponding to T. Let {b[k]} denote the coordinates of b[k] with respect to basis B. Let {e[k]} denote the standard
basis,  that  is:  {e[1]}=={1,0,0,0,...},  {e[2]}={0,1,0,0,...},  etc.  The  coordinates  of  b[k]  with  respect  to  B  is  {e[k]},  i.e.
{b[k]}=={e[k]}.
Now, the coordinates of T[{b[k]}] can be denoted as {T[{b[k]}]}.
Let x be a vector in R^n. x[i] be its ith coordinates. We can write x as Sum[x[i]*{e[i]},{i,1,n}]. Now,

T[x]==T[Sum[x[i]*{e[i]},{i,1,n}]]==Sum[x[i]*T[{e[i]}],{i,1,n}]
Thus we see that kth column of matrix A is {T[{b[k]}]}.

7 Orthogonality and Least-squares

7.1 Inner Product, Length, And Orthogonality

� Inner product definition

The inner product of vectors u and v in R^n is defined to be Sum[u[i]*v[i],{i,1,n}], where u[i] and v[i] are the elements in u and
v.

� Properties of inner product

Let u, v, and w be vectors in R^n, and let c be a scalar.
u.v==v.u
(u+v).w==u.w+v.w
(c*u).v==c(u.v)==u.(c.v)

u.u>=0, and u.u = 0 iff u==0.

� Length of a vector

The length (or norm) of vÓ is the nonnegative scalar °vÓ´ defined by °vÓ´ := v
Ó
.v

Ó

� Distance

For uÓ and vÓ in Rn, the distance between them is defined to be °uÓ - v
Ó´.

� Orthogonality

Two vectors u and v in R^n are orthogonal (to each other) if u.v==0.

The motivation for this definion:
We want to look at vectors as lines in Euclidean space, and define orthogonality as being perpendicularity. Suppose u and v are
vectors. They are orthogonal if the distance from u to v and u to -v are equal. Using Pythagorean theorem, the distance from u to
v is
°u-v´==°u´^2 + °v´^2 - 2*u.v
The distance from u to -v is
°u+v´==°u´^2 + °v´^2 + 2*u.v
we see that they are equal iff u.v==0.
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The motivation for this definion:
We want to look at vectors as lines in Euclidean space, and define orthogonality as being perpendicularity. Suppose u and v are
vectors. They are orthogonal if the distance from u to v and u to -v are equal. Using Pythagorean theorem, the distance from u to
v is
°u-v´==°u´^2 + °v´^2 - 2*u.v
The distance from u to -v is
°u+v´==°u´^2 + °v´^2 + 2*u.v
we see that they are equal iff u.v==0.

� Pythogorean Theorem

Two vectors u and v are orthogonal iff °u+v´^2==°u´^2+°v´^2
(this follows directly from defitions)

� Orthogonal Complements

Let W be a subspace of R^n, let z be a vector. If z is orthogonal to every vector in W, then z is said to be orthogonal to W. The set
of vectors that are orthogonal to W is called the orthogonal complement of W, written as W^¦ or ¦[W].

� theorem: 

A vector v is in ¦[W] iff v is orthogonal to all vectors in a set that spans W.

Proof:
Let {a1,...,an} be a set of basis vectors for a subspace W of R^n.
Given: v is orthogonal to ai for all i. This means ai.v==0 for all i.
We want to prove that v is orthogonal to any linear combinations af ai. This means

Sum[ci*ai,{i,n}].v==0
where ci are scalars. By properties of inner product, the equation is equivalent to

Sum[(ci*ai).v,{i,n}]==0
Sum[ci*(ai.v),{i,n}]==0
Sum[ci*0,{i,n}]==0

This proves half of the first statement.
If b.v==0 for all b in W, then it means

Sum[(ci*ai),{i,n}].v==0
by inner product property,

ci*ai.v==0 for all i.
ai.v==0

End of proof.

� dimensions of ¦[W]

Let W be any vector space. The dimension of ¦[W] is 1.

Proof:
Let x be a non-zero vector in W. Suppose b1, b2 are basis vectors in ¦[W], thus ¦[W] has dimension 2.
If follows that b1.x==0, b2.x==0, and (b1+b2).x==0. Combine the equations we have

(b1+b2).x==b1.x
For vectors u1,u2,v, u1.v==u2.v iff u1==u2, thus

b1+b2==b1
b2==zeroVector

but this cannot be because basis vectors cannot be zero vectors. Thus, b1 and b2 cannot be a basis for ¦[W], and ¦[W] cannnot
have dimension 2. Similarly, if b1, b2, b3 are basis for ¦[W], we can show that (b1+b2+b3)==b1, b2+b3==zeroVector, and this
cannot be because b2 and b3 are independent. Similarly, ¦[W] cannot have dimensions greater than 1.
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Proof:
Let x be a non-zero vector in W. Suppose b1, b2 are basis vectors in ¦[W], thus ¦[W] has dimension 2.
If follows that b1.x==0, b2.x==0, and (b1+b2).x==0. Combine the equations we have

(b1+b2).x==b1.x
For vectors u1,u2,v, u1.v==u2.v iff u1==u2, thus

b1+b2==b1
b2==zeroVector

but this cannot be because basis vectors cannot be zero vectors. Thus, b1 and b2 cannot be a basis for ¦[W], and ¦[W] cannnot
have dimension 2. Similarly, if b1, b2, b3 are basis for ¦[W], we can show that (b1+b2+b3)==b1, b2+b3==zeroVector, and this
cannot be because b2 and b3 are independent. Similarly, ¦[W] cannot have dimensions greater than 1.

� Theorem: Orthogonality, row space, null space, and column space

Let A be an m × n matrix. Then the orthogonal complement of the row space of A is the nullspace of A, and the orthogonal
complement of the column space of A is the nullspace of T[A]. In symbols,
¦@Row[A]==Nul[A], ¦@Col[A]==T@Nul[A]

� Proof

The row-column rule for computing A.x shows that if x is in Nul A, then x is orthogonal to each row of A (with the rows treated
as vectors in R^n). Since the rows of A span the row space, x is orthogonal to Row A. Conversely, if x is orthogonal to Row A,
then x is certainly orthogonal to the rows of A, and hence A.x==0. This proves the first statement. Thesecond statemenfollows
from the first by replacing A with T[A] and using the fact that Col[A]==T@Row[A].

7.2 Orthogonal Sets

� orthogonal set and linear independence

A set of vectors {u1, ... ,up} in Rn is said to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is,

if ui.uj==0 whenever i¹j.

If S=9vÓ1, ..., v
Ó
p= is an orthogonal set of nonzero vectors in Rn, then S is linearly independent.

Proof:

We want to show that the only solution to the equation 0
Ó

 == Úi=1
p

ci v
Ó
i is for ci � 0 for all i. Multiply both sides by vÓ1 to obtain

0 � 0
Ó
.v

Ó
1 � IÚi=1

p
ci * v

Ó
iM.vÓ1

by distribution property, we have

0 � IÚi=1
p

ci * I v
Ó
i.v

Ó
1MM

Since elements of S are pairwise orthogonal, their dot product is 0, thus we have

0 � c1 * I v
Ó
1.v

Ó
1M

which shows that c1 is 0. Similarly, all other scalers must be 0. End of Proof.

� computing coordinates wrt a given orthogonal basis

Let 9vÓ1, ..., v
Ó
p= be an orthogonal basis for a subspace W of Rn. Let yÓ be a vector in W. The coordinates of yÓ with respect

to the basis is TableAIyÓ.vÓiM � IvÓi.v
Ó
iM, 8i, 1, p<E.

Proof:

we want to show that ci � IyÓ.vÓiM � IvÓi.v
Ó
iM is a solution to the equation yÓ � Úi=1

p
ci * v

Ó
i.

To solve the equation, dot both sides by vÓ1, we get

y
Ó
.v

Ó
1 � Ic1 * v

Ó
1M.vÓ1

(most vector terms are eliminated because their dot product is zero)
Isolate c1 to solve one coordinate. Other coordinates can be solved similarly.
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Proof:

we want to show that ci � IyÓ.vÓiM � IvÓi.v
Ó
iM is a solution to the equation yÓ � Úi=1

p
ci * v

Ó
i.

To solve the equation, dot both sides by vÓ1, we get

y
Ó
.v

Ó
1 � Ic1 * v

Ó
1M.vÓ1

(most vector terms are eliminated because their dot product is zero)
Isolate c1 to solve one coordinate. Other coordinates can be solved similarly.

� orthonormal set

A set {u1, ... ,up} is an orthonormal set if it is an orthogonal set of unit vectors.

An m × n matrix U has orthonormal columns iff (T@U).U==I.

Proof: (See D.C.Lay)
The proof for the general matrix is tedious, though not much insight. Essentially, the steps are to carry out the product showing
each matrix entry in detail, and show that in order for the columns in U to be orthonormal, certain product of elements must be 0
or 1, and when this occurs, the whole thing equals to the identity matrix.

� length and orthogonality invarience

Let U be an m × n matrix with orthonormal columns, and let xÓ and yÓ be in Rn. Then

(a) °U.xÓ´==´x°
(b) (U.xÓ).(U.y)==xÓ.yÓ
(c) (U.xÓ).(U.y)==0 iff xÓ.yÓ==0.

Property (a) and (c) say that the linear mapping xÓ # U.x
Ó preserves lengths and orthogonality. Proof should be easy.

7.3 Orthogonal projection

� The orthogonal Decomposition theorem

Let W be a subspace of Rn that has an orthogonal basis. Then each yÓ in Rn can be written uniquely in the form

y
Ó

� a
Ó

+ z
Ó <<1>>

where aÓ is in W and b
Ó

 is in ¦@W. In fact, if 9uÓ1, ..., u
Ó
p= is any orthogonal basis of W, then

a
Ó

� Úi=1
p J yÓ.uÓi

uÓi.u
Ó
i

u
Ó
iN<<2>>

and

z
Ó
:= y

Ó
- a

Ó
Proof:

Let 9uÓ1, ..., u
Ó
p= be an orthogonal basis of W, and define aÓ as in the theorem. Clearly, aÓ is in W because aÓ is a linear

combination of the basis uÓ1, ... u
Ó
p. Let zÓ := y

Ó
- a

Ó

Since uÓ1 is orthogonal to u2, ..., up, it follows from <<2>> that

z
Ó
.u

Ó
1 � IyÓ - a

ÓM.uÓ � y
Ó
.u

Ó
1 - a

Ó
.u

Ó
1

substitute aÓ by its definition, and distribute, we have

y
Ó
.u

Ó
1 - a

Ó
.u

Ó
1 � y

Ó
.u

Ó
1 - J yÓ.uÓ1

uÓ1.u
Ó
1

* u
Ó
1N.uÓ1 � y

Ó
.u

Ó
1 - y

Ó
.u

Ó
1 � 0

thus zÓ is orthogonal to uÓ1. Similarly, z is orthogonal to each uj in the basis for W. Hence z is orthogonal to veery vector in W.

This is, z is in ¦@W.
To show that decomposition in <<1>> is unique, suppose that y can also be written as y==a1+z1, with a1 in W and z1 in W^¦.
Then a+z== a1+z1 (since both sides equal y), and so

a-a1==z1-z
This equality shows that the vector v==a-a1 is in W and in W^+. (because z1 and z are both in W^+, and W^+ is a subspace)
Hence v.v==0, which shows that v==zero. This proves that a==a1, and also z1==z.
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Proof:

Let 9uÓ1, ..., u
Ó
p= be an orthogonal basis of W, and define aÓ as in the theorem. Clearly, aÓ is in W because aÓ is a linear

combination of the basis uÓ1, ... u
Ó
p. Let zÓ := y

Ó
- a

Ó

Since uÓ1 is orthogonal to u2, ..., up, it follows from <<2>> that

z
Ó
.u

Ó
1 � IyÓ - a

ÓM.uÓ � y
Ó
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Ó
1 - a

Ó
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Ó
1

substitute aÓ by its definition, and distribute, we have

y
Ó
.u

Ó
1 - a

Ó
.u

Ó
1 � y

Ó
.u

Ó
1 - J yÓ.uÓ1

uÓ1.u
Ó
1

* u
Ó
1N.uÓ1 � y

Ó
.u

Ó
1 - y

Ó
.u

Ó
1 � 0

thus zÓ is orthogonal to uÓ1. Similarly, z is orthogonal to each uj in the basis for W. Hence z is orthogonal to veery vector in W.

This is, z is in ¦@W.
To show that decomposition in <<1>> is unique, suppose that y can also be written as y==a1+z1, with a1 in W and z1 in W^¦.
Then a+z== a1+z1 (since both sides equal y), and so

a-a1==z1-z
This equality shows that the vector v==a-a1 is in W and in W^+. (because z1 and z are both in W^+, and W^+ is a subspace)
Hence v.v==0, which shows that v==zero. This proves that a==a1, and also z1==z.

Property of orthogonal projection:
Let W=Span[{u1,...,up}]. Let y be a vector in W. Projection[y,W]==y.

� The best approximation theorem

Let W be a subspace of R^n, y by any vector in R^n, and va be the orthogonal projection of y onto W determined by an orthogo-
nal basis of W. Then va is the closest point in W to y, in the sense that

||y-va||<||y-v|| <<3>>
for all v in W distinct from y.

Proof: Take v in W distinct from va. Then v-va is in W. By the Orthogonal Decomposition Theorem, y-va is orthogonal to W. In
particular, y-va is orthogonal to v-va. Since

y-v==(y-va)+(va-v)
The Pythagorean theorem gives

(||y-v||)^2==(||y-va||)^2+(||va-v||)^2
Now (||va-v||)^2>0 because va-v=!=zero, and so the inequality in <<3>> is clear.

If {u1,...,up} is an orthonormal basis for a subspace W of R^n, then
Projection[y,W]==Sum[(y.ui)*ui,{i,1,p}] <<4>>

Let the matrix U has column vectors u1,...,up. Then,
Projection[y,W]==U.U^t.y, for all y in R^n. <<5>>

Proof:
Formula <<4>> follows immediates from <<2>>. Also, <<4>> shows that projection[y,W] is a linear combination of the columns
of U using the weights y.ui. The weights may be written as u^T_i,  showing that they are the entries in U^T.y and justifying
<<5>>.
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7.4 The Gram-Schmidt process

� 7.4 The Gram-Schmidt process

Given a basis {x1,...,xp} for a subspace W of R^n, define
v_1:=x_1
v_p:=x_p - Sum[((x_p.v_i)/(v_i.v_i))*v_i,{i,1,p-1}]
Then {v1,...,vp} is an orthogonal basis for W. In addition,
Span[{v1,...,vk}]==Span[{x1,...,xk}] for 1<=k<=p.

Proof:
For  1<=k<=p,  let  W_k:=Span[{x1,...,xk}]. Set  v1:=x1,  so  that  Span[{v1}]==Span[{x1}].  Suppose  that  for  some k  wehave
constructed v1,...,vk so that {v1,...,vk} is an orthogonal basis for W_k. Define

v_(k+1)==x_(k+1)-Projection[x_(k+1),W_k]
Note that Projection[x_(k+1),W_k] is in W_k and hence alsoin W_(k+1). Since x_(k+1) is in W_(k+1), so is v_(k+1). Further-
more, v_(k+1)!=zero because x_(k+1) is not in W_k:=Span[{x1,...,xk}]. Hence {v1,...,v_(k+1)} is an orthogonal set of nonzero
vectors in the (k+1)-dimensional space W_(k+1). By a therome about number of indepedent vectors spans n-dimensional space,
this set is an orthogonal basis for W_(k+1). Hence W_(k+1)==Span[{v1,...,v_(k+1)}]. After p steps, the process stops.

Idea:
The idea of Gram-Schmidt process is to use projection to go through each of the vectors. For each vector, project it onto the space
previously found, thus obtaining a orthogonal basis one by one.

� QR Factorization

If A is an m x n matrix with linearly independent columns, then A may be factored as A==Q.R, where Q is an m x n matrix
whose columns form an orthonormal basis for Col A and R is an n x n upper triangular invertible matrix with positiveentries on
its diagonal.

Proof: The  columns of A form a basis {x1,...,xn} for Col A. Construct an orthonormal basis {v1,...,vn} for W=Col A with
property <<1>> in theorem 11. This basis may be constructed by the Gram-Schmidt process or some other means. Let
Q:={v1 v2 ... vn}
For k:=1,...,n, x_k is in Span[{x1,...,xk}]==Span[{v1,...,vk}]. So there are constants, r_1k,...,r_kk, such that

x_k==r_1k*v_1+...+r_kk*v_k+0.v_(k+1)+...+0.v_n
we may assume that r_kk >=0. (if r_kk<0, multiply both r_kk and v_k by -1) This shows that x_k is a linear combination of the
columns of Q using as weights the entries in the vector

r_k:={r_1k,...,r_kk,0,...,0}
That is, x_k==Q.r_k for k:=1,...,n. Let R:={r1,...,rn}. Then

A=={x1,...,xn}==[Q.r_1,...,Q.r_n]==QR
The fact that R is invertible follows easily from the fact that the columns of A are linearly independent. Since R is clearly upper
triangular, its nonnegative diagonals entries must be positive.

24   linearAlgebraNotes.nb



Questions

� number of eigen values

What is the relation between a given square (real) matrix and the number of (real) eigen values it has? (I suppose if complex
numbers and multiplicity are counted, then it's always the same as the dimension of the matrix?)

prove or study: The set of eigenvectors always spans row space?

Suppose A is a n × n matrix. I think that if we allow complex eigen values, then A always have n independent eigenvectors.

� characteristic polynomial

What is the relation between characteristic polynomial and matrix without using determinants? i.e. I wish to see the connection of
linear mapping and its characteristic polynomial, through aspects other than incomprehensible determinants or row reduction.

From: Robin Chapman <rjc@maths.ex.ac.uk>
Newsgroups: sci.math
Subject: Re: matrix and its polynomial
Date: Wed, 24 Jun 1998 07:49:18 GMT
Organization: University of Exeter

In article <yo33ecvwu5a.fsf@shell13.ba.best.com>,
  Xah Lee <xah@shell13.ba.best.com> wrote:
> * How to define the characteristic polynomial of a square matrix
> without involving determinants?

Let A be an n by n matrix over a field k. The characteristic polynomial of
is the product of (X - a_j)^(n_j) where the a_j are the distinct eigenvalues
of A over an algebraic closure of k, and n_j is the dimension of the
nullspace of (A - a_j I)^n.

Robin Chapman                           + "They did not have proper
Department of Mathematics               -  palms at home in Exeter."
University of Exeter, EX4 4QE, UK       +
rjc@maths.exeter.ac.uk                  -    Peter Carey,
http://www.maths.ex.ac.uk/~rjc/rjc.html +      Oscar and Lucinda

� Relation between Null space and Column space

There is a theorem in basic linear algebra that says:
"Let A be an m × n matrix. Then the orthogonal complement of the row space of A is the nullspace of A."

Is there a geometric insight that makes this apparant?
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� Transposition as a linear function

• Is there a square matrix B such that B A==AT for any square matrix A?

Partial Answer: It seems yes.
To Do: Prove this, and find a general formula for B given A.
• Can we think of transposition of square matrices as one-to-one function for such matrices, and the fixed point of this function is
all the identity matrices.
My Answer: Yes.

� vector space always a sub space?

Is a vector space always a subspace of some vector space other than itself?
I think: A vector space may not be a subspace of some other vector space. For example: R^3 is a vector space, but it is not a
subspace of any other vector space, it is a subspace to itself only. Not True, because

R^3 := {{a,b,c}| a, b, c are real numbers}. 
We can defined another set 

M := {{a,b,c}| a, b, c are complex numbers}, 
thus it can be shown that R^3 proper subset of M , and since (i think) M is a vector space, so after all R^3 is a subspace of some
other vector space.
Now, is M a subspace of some other vector space?
In general, maybe we can always concoct a vector space V, so that the given vector space is a subset of V, thus a subspace of V.

To Do
Prove: Let A, M, N be matricies. Show that A M + A N==A (M + N).

Coordinate permutation

� Coordinate permutation

What kind of structural change occur to column vectors in a matrix during the process of row operation? Perhaps write a mma
program illustrating this for 2D and 3D vectors.

1998/03/19.
Suppose we have a point with coordinates {a,b,c}. Now there are six permutations of its coordinate. If we connect all six points
to each other, what kind of shape will it form? Especially consider a moving point. The problem can be generalized to higher
dimesions.

I thought of it when studying linear algebra, on the paragraph that says "row operations does not change the linear dependence of
the original's column vectors".
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� Solution

Some experiments with mma graphics shows that they are  in general  a  six sided regular  polygon lying on a plane,  and the
polygon has symmetry of that an equiangular triangle.

After thinking, here's my conclusion:
In the 2D analogous problem, the line x==y acts like a mirror. Similarly, the 3D problem have 3 planes that are mirrors. Each
plane is the symmetric plane between any two axes. If a point does not lie in one of these planes, then it will be reflected and
results 6 points. The 6 points form a hexagon centered on the line x==y==z and orthogonal to it, and it has symmetry of that an
equiangular triangle. If we start with two or more points in 3D, then I imagine the result shape would be a prism-shaped in
general, with both ends that of a hexagon. So it isn't very interesting. Before this, I thought the answer is some projection of
higher dimension objects.

Needs@"Graphics`Polyhedra`"D
Needs@"GLExplorer`GLRenderer` "D
SetOptions@glMCreateWindow, Spin -> True, LockLights -> TrueD;
GLShow@Graphics3D@8First�Polyhedron@Cube, 80, 0, 0<, 0.2D,

H8HFirst�Polyhedron@Tetrahedron, ð, 0.05D &L �� ð1, HLine@880, 0, 0<, ð1<D &L �� ð1< &L�

Permutations �Table@If@Random@D > .5, 1, -1D * Random@D, 83<D<D, Axes -> True,

AxesLabel -> 8"x", "y", "z"<, PlotRange -> 88-1, 1<, 8-1, 1<, 8-1, 1<<, Ticks -> NoneD;

Geometry flavored questions

� characteristic of sense-reversing mapping

Given A.x, how do we know that this mapping reverse sense?
A: probably by comparing a oriented triangle and its image.

� characteristics of one-to-one mapping

Suppose we have a non-linear continuous mapping from R^n to R^m, with domain equal to R^n.
How can we tell whether this mapping is one-to-one?

� geometric view of linear mapping that has maximum number of eigenvalues

Suppose A is an n by n square matrix.
Conjecture: A has maximum of n eigen values.
Conjecture: There exist an n by n matrix A with n eigen values, for any positive integer n > 1.

Question:
Suppose A is a matrix for a linear mapping from R^2 to R^2, with two eigenvalues. I am unable to see intuitively the geometry
aspect of such mapping. 
If A is an n by n matrix with n eigen values. This means that the transformation has n lines that act like fixedpoints. Take n=2
case. For example, the matrix {{3,-2},{1,0}} has two independent eigen vectors {{1,1},{2,1}} and they are not orthogonal.

Answer: For the 2D case, view it as parallel projection of two planes in 3D. Similarly, higher dimension problem can be visual-
ized using projection.
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Needs@"Transform2DPlot`"D;
With@8matrix = 883, -2<, 81, 0<<.88Cos�Α, Cos@2 * Pi � 4 + ΑD<, 8Sin@ΑD, Sin@2 * Pi � 4 + ΑD<< �.

Α -> 2 * Pi � 4<, Transform2DPlot@matrix.8ð1, ð2< &, 8-1, 1< 6, 8-1, 1< 6, Prolog ->

First�Transform2DPlot@8ð1, ð2< &, 8-1, 1< 6, 8-1, 1< 6, DisplayFunction -> IdentityD,
Epilog -> 8Hue@.7D, Line �� Transpose �H6 8-1 * ð, ð< &L�Eigenvectors �matrix<,
PlotRange -> 88-1, 1<, 8-1, 1<< 7DD;

With@8matrix = 883, -2<, 81, 0<<.88Cos�Α, Cos@2 * Pi � 4 + ΑD<, 8Sin@ΑD, Sin@2 * Pi � 4 + ΑD<< �.
Α -> -2 * Pi � 4<, HTransform2DGraphics@ð, matrix.8ð1, ð2< &, Prolog -> ð,

Epilog -> 8Hue@.7D, Line �� Transpose �H6 8-1 * ð, ð< &L�Eigenvectors �matrix<,
Axes -> True, AspectRatio -> Automatic, ResolutionLength -> 0.2D &L�

HPolarGrid@80, 6, .1<, 81, 2, .1<, 8Hue, GrayLevel@1 - ðD &<DLD;
Typesetting Palette

NotebookPut �

HNotebook@ð1, Active ® True, Background ® Hue@0.18, .5, 0.1D, CellMargins ® 883, 0<, 80, 3<<,
CellOpen ® True, Editable ® False, ImageMargins ® 880, Inherited<, 8Inherited, 0<<,
Magnification ® 1, PageWidth ® WindowWidth,

ScrollingOptions ® 8"PagewiseScrolling" ® True<, ShowCellBracket ® False,

ShowCellLabel ® False, ShowCellTags ® False, WindowClickSelect ® False,

WindowElements ® 8<, WindowFrame ® "Normal", WindowFrameElements ® 8"CloseBox"<,
WindowMargins ® 88Automatic, 30<, 8Automatic, 5<<,
WindowSize ® 8Fit, 410<, WindowTitle ® None, WindowToolbars ® 8<D &L�

HHCell@ð1, Active ® TrueD &L �� ð1 &L�8BoxData�

HGridBox@ð1, RowSpacings ® 0, ColumnSpacings ® 0D &L�HPartition@ð1, 5D &L�HButtonBox ��

Join@HHOverscriptBox@ð1, "1"D &L �� 8"a", "b", "e", "u", "v", "x", "0", "�"<L,
8SubscriptBox@OverscriptBox@"�", "1"D, "�"D, "Λ", "B", "c", "#", SuperscriptBox@

"R", "n"D, SuperscriptBox@"R", "m"D, SubscriptBox@"�", "�"D, SubscriptBox@
RowBox@8"8", OverscriptBox@"x", "1"D, "<"<D, "B"D<, Table@" ", 85<DDL,

BoxData�HGridBox@ð1, RowSpacings ® 0D &L�HHList�ButtonBox �RowBox�List�

RowBox�8SubscriptBox@ð, "1"D, ",", "...", ",", SubscriptBox@ð, "n"D< &L ��

8"a", "c", "x", "�"<L, BoxData�HGridBox@ð1, RowSpacings ® 0D &L�

HHList�ButtonBox �RowBox�8"8", RowBox@8SubscriptBox@OverscriptBox@ð1, "1"D, "1"D,
",", "...", ",", SubscriptBox@OverscriptBox@ð1, "1"D, "n"D<D, "<"< &L ��

8"a", "b", "v", "�"<L, BoxData�HGridBox@ð1, RowSpacings ® 0D &L�

MapThread@List�ButtonBox �RowBox�List�RowBox�8SubscriptBox@ð1, "1"D,
SubscriptBox@OverscriptBox@ð2, "1"D, "1"D, "+", "...", "+",

SubscriptBox@ð1, "n"D, SubscriptBox@OverscriptBox@ð2, "1"D, "n"D< &,

Transpose �88"x", "a"<, 8"c", "v"<<D, BoxData�

HGridBox@ð1, RowSpacings ® 0D &L�HHList�ButtonBox �ð &L ��

8RowBox@8SuperscriptBox@"R", "n"D, "®", SuperscriptBox@"R", "m"D<D,
RowBox�8RowBox@8"A", OverscriptBox@"x", "1"D<D, "�", OverscriptBox@"b", "1"D<,
RowBox@8OverscriptBox@u, "1"D, "+", OverscriptBox@v, "1"D<D, RowBox@

8UnderoverscriptBox@"Ú", RowBox@8"i", "=", "1"<D, "�"D, RowBox@8SubscriptBox@
"�", "i"D, " ", SubscriptBox@OverscriptBox@"�", "1"D, "i"D<D<D<L<;
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