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1 System of Linear Equations

m Solutions to a system of linear equations

There are only 3 possiblilitiesregarding the solutionsto a system of linear equations:
* No solution.

« Exactly one solution.

« Infinitely many solutions.

m Definition: Echelon Form, Reduced Echelon form, and Pivot Positions.

A leading entry of arow refers to the leftmost nonzero entry (in a nonzero row).

A rectangular matrix isin echelon form if it has the following two properties:

1. All nonzero rows are above any rows of all zeros.

2. If the leading entry of row nisin column m, then the leading entry for row n+1 must be in column m+1 or greater.

If amatrix in echelon form satisfies the following additional conditions, thenitisinreduced echelon form:
1. The leading entry in each nonzero row is 1.
2. Each leading 1 isthe only nonzero entry in its column.

The leading entries of a matrix in echelon form are called Pivot Positions.

m Existence and Uniqueness Theorem

« Each matrix is row equivalent to one and only one reduced echelon matrix.(t

proof in Appendix)

« A linear systemis consistent iff the rightmost column of the augmented matrix is not a pivot column, that is, iff an echelon form
of the augmented matrix has no row of the form [0 ... 0 b] with b nonzero.

« If alinear system is consistent, then the solution set contains either (1) a unique solution, when there are no free variables, or (2)
infinitely many solutions, when there is at least one free variable.

by Xah: | like to see a (formal) proof of this.
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2 Vectors and Matrix Equations

= Span

Ifdy, ..., a,aevectorsinR™andxy, ..., X,aescalars thenSpan[{a;, ..., @n}]:=x181+... +Xpan.
Span[{&;, ..., a@n}]isasubsetof R™.

If Span[{@1, ..., @}]==R", wesay thesetof vectors {d;, ..., @} spansr".

= Definition of AX

If Aisan m x n matrix, withcolumnsa;, ..., @,,andX isinR", thenthe vector AX isdefinedtobe >7'_; x; a;.

m Equivalent equations

Given anm x n matrix A, withcolumnsa,, ..., &, andgivenb isinR™ the following equations all denote the same thing.
* The matrix equation AX == b

» the vector equation >"_; x; @; = b

« the system of linear equations whose augmented matrix is {8 . . . @, b}

m Equivalent Statements

Let A beam x n matrix. Then the following statements are logically equivalent.

* For each bin R™ the equation AX == b is consistent.
* The columnsof A span R™.
« A has apivot positionin every row.

By Xah: They are simply logically equivalent statements. Whether they are true is another matter. For (3), think of A as a set of
vectors, and a pivot in every row means this set contain all the basis vectorsin R™, thusit span R™. It is not sufficient if A hasa
pivot position in every column. Example: 8@ :={1,0,0}, @, :={0,1,0} does not span R3.

m Distribution Property of Vectors

If Aisanm x n matrix, U and V are vectorsin R", and c isa scalar, then
o A <A+\7) = AU +AV

= A Theorem on Homogeneous Equation

A system of linear equations is said to be homogeneous if it can be written in the form AX == 0. The homogeneous system
AX = 0 hasanonzero solutioniff the system has at least one free variable.

by Xah: This is so because a consistant system either has one unique solution or infinite number of solutions. For the latter, there must be a free variable.
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Suppose the equation AX == b is consistent for some given b, and let p be a solution. Then the solution set of AX == b isthe
set of all vectors of theform p + V|, where V, is any solution of the homogeneousequation AX == 0.

Proof by Xah: We have

Ap =bandAvV, =0

Ap+AV,=b+0=b

A(p+Vn) =b

thus (p + Vp) isasolutionto AX = b.

Now we show that there can be no solution other than (ﬁ+\7h).SupposeéisasolutiontoAA = b. Then
AT =

AC-Ap=Db-b=0

A(c-p) =0

This showsthat (€ - p) = V}, for somevy,

End of proof.

m Definition of Linearly Dependence

A set of vectors{él, Cy an} in vector space V is said to be linearly independent if the vector equation
SPaxi 8=0
has only the trivial solution X == 0. Otherwise, the set is said to be linearly dependent.

m Characterization of Linearly Dependent Sets

cAsetS:= {él, Cy ﬁn} of two or more vectorsis linearly dependent iff at least one of the vectorsin Sisalinear combina
tion of the others.

*Anyset {@;, ..., @} inRMislinearly dependent if n>m.

«IfasetS:={a;, ..., d}inR™containsthe zero vector, then the set islinearly dependent.

Problem: Given a set of vectors with one element a linear combination of others. How to determine which one and its linear
combination? In general, given a set of vectors, how to determine which vector can be written as a linear combination of which
vectors, and which cannot.

Solution:
Solve the equation

X1§.1+... +Xn§.n =0
then isolate any term @y to one side shows its dependence relationship. If X, == 0, then it shows the vector &y is not a linear

combination of other vectorsin the set. If X, == O for al k, it agrees with the definition of linearly independent set, no vector isa
linear combination of other vectors.
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2.5 Intro to Linear Transformation

m Linear Transformation

A transformation (or mapping) T islinear if
«T[U+V] =T[U] + T[V] foral T,V inthedomainof T.
*T[c U] =c T[u] forall Gandall scalarsc.

Theorem: For any linear transformation T, T[0] ==
(thisdoesnot meanthat T[d] # O forany a # O.

m Stardard Matrix of Linear Transformation

Let T: R" - R be alinear transformation. Then there exists a unique matrix A such that
T[X] = AX foral X inr", and
A= (T[], ..., T[€n]}

where &; istheith column of of the identity matrix | ,.

A iscalled the standard matrix for the linear transformation T.

(Proof in D.C.Lay 2.6 p.80. Good.)

With this theorem, we could say that every linear transformation from R" to R"™ is a matrix transformation, and it's easy to prove
that every matrix transformation is linear (see D.C.Lay 2.2 p.52. The one-to-one correspondence of A X and T[x] isindicated in
the book also. see 2.6, excercise 33, p.85. Easy.)

Note, in this theorem, one may think it will have problems when n + m. Not so. Because note that T[e] will return a vector in
dimension m.

= Onto and one-to-one mapping
* A mapping T:R" - R™issaid to be onto R™ if each b in R™ isthe image of at least one X in R".
+ A mapping T: R" - R" is said to be one-to-oneif each b in R™ isthe image of at most oneX inR".

Let T: R" - R" bealinear transformation and let A be the standard matrix for T. Then,
* T mapsR" onto RMiff the columns of A span R™.
T isone-to-oneiff the columns of A are linearly independent.

3 Matrix Algebra

3.1 Matrix Operations

= Multiplication of Matrices

If Alisanm x nmatrix, and if B isan n x p matrix, then
A®B:={Aby, ..., Aby}.
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Motivaton for the definition:
We want the product A®B to have the property (AB) X = A (BX).
Now,

A (B.X) =A (Zip:lxi 5i> = S A (xi Bi) = 5 (xi (A bi ))

Note that A[x]+A[y]==A[x+y].

The power of A isdefined by
A< = | «Product [A, {n}],inparticular A%=I.

By the definition of matrix multiplication, it followsthat the
ith row of (A B)==(ith row of A) times (the matrix B)
Note that the (ith row of A) isa 1 by n matrix.

m Transposition of Matrices
The transpose of A isthe n x m matrix, denoted by AT, whose columns are the corresponding rows of A.

Note: We can also define Transpose as follows: The transpose of an x m matrix A isam x n matrix AT such that Dot[A X,
y]==Dot[AT y, X]. For example, suppose we have A :={{ab} {c,d}}. Then Dot[A X, y] isthen

(ax1+bx2)yl+ (cx1+dx2)y2

To evalute Dot[AT y, X], we note that it differs from Dot[A X, y] only by the position of the pairs {b,c}, {x1,y1}, {x2,y2} in the
final product. So make a switch to get

(ayl+cy2)x1+ (byl+dy2)x2

Both of them expands to

axlyl+cxly2+bx2yl+dx2y2

This can be expressed and tested in Mathematica as

Clear [n, m A, vXx, vyl;

{n, m = {3, 5};

A = Tabl e [Random[I nt eger, {1, 9}1, {n}, {m}1;

vx = Tabl e [ToExpression["Xx" <>ToStringei ], {i, m];
vy = Tabl e [ToExpression["y" <>ToStringei ], {i, n}l;

(A. vX).vy - (Transpose@A.vy).vx // Sinplify
0
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m Properties of Matrix Multiplication

Let A bem x n matrix and let B and C have sizes for which the indicated sums and products are defined. Let r be any scalar.
1 A(BC==AB)C

2. AB+C)==AB+AC

3. (B+C)A==BA+CA

4. r (A B)==(r A) B==A (r B)
5. I m*xA=A=Axxl,
6. (AT -

7. (A+B)T == AT+ BT

8. (r A)T==r AT

9. (AB)T == BT AT

Proofs in D.C.Lay 3.1. Need to see the proof of 9.

My theorem:

Let A be asguare matrix and D be a triangular matrix (a matrix with diagonal values and rest zero.)

A D==(D AT)"T.

D A==(AT D)*T

Note, D is adiagonal matrix. The difference of A D and D A isthat D A islike A D except the D comes from above A instead of
ontheright. Thusit isequalsto D AT, but we need to transpose them back, so the theoremis A D==(D AT)"T.

3.2 The Inverse of a Matrix

= Inverse of a Matrix

Let A denote a matrix. The inverse of A isamatrix (written as A-1) such that
A %% Afl == Afl % A==1
If A1 exists, then we say that A isinvertible.

= inverse of 2x2 matirx

Let A :={{ab}{cd}}.If ad-bc==0, then A isnot invertible, otherwise A isinvertible and
Ail::ll(ad - b C) {{d!_b} 1{ _C!a}}

My Proof:
Suppose the column vectorsin A are linearly dependent, so that
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a=rb
c==rd

for somer. Eliminater we get ad - b c==0. So if thisis true, then column vectorsin A are linearly dependent, thusit A has no
inverse. If ad - b ¢ != 0, then the column vectors are not linearly dependent, so ainverse exist. In particular, it means the follow-

ing two systems has sol ution:

axl+bx2==1

cx1l+dx2==0
and

ayl+by2==0
cyl+dy2==1

We solve them by algebra to complete the proof.

Question: Isthere a square matrix M or N such that M A==AT or A N==AT for any square matrix A?
Answer: Not always, for example the matrix A=={{0,1},{0,0}}. If M or N exists, then

M==AT A1 N==A"1AT.

End of example.

Question: We may think of transposition as a transformation of a one-to-one function of matrix, and the fixed point of this
transformation is all the identity matrices. What is the geometric significance of transposition?

ToDo:

1) Show that identity matrix isunique. i.e. if E A==A or A E==A, then E==I.

2) Show, or find an example such that M B==N B, but M !=N; B M==B N but M !=N.
3) Show that for any matrix A, C such that A C==I, then C A==I.

m Theorem of Inverses

« If Alisaninvertiblen x n matrix, then for each binR", the equation AX == b has the unique solution X==A"1 b.

 |f A isaninvertible matrix, then

1. (A )r-1==A

2. (ANN-1==(A" ) T

« If A and B are n x ninvertible matrices, then (A B) isaso invertible, and (A B)*-1==B-1 A1

*« Annx nmatrix A isinvertible iff A isrow equivalent to In, and in this case, any sequence of elementary row operations that
reduces A to In also transformsinto AL,

To Do: Read the proof of this.
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My proof of one of the above (the rest isin the book):
(ATy~1== (A1) T
(AT) (AT) 7t — (AT) (AL)T
==(AT) (A )T
INT==((AT) (A" ) DT
I==((A" D) AT (ADAT
|==

(this proof may be wrong, because it assumed (AT)"-1 exist outright.)

3.3 Characterizations of Invertible Matrices

= The Invertible Matrix Theorem

Let A be asquare n x n matrix. The following statements are equivalent.

. A isaninvertible matrix.

. A isrow equivalent to the n x n identity matrix.

. A isaproduct of elementary matrices.

. Theequation AX == 0 has only the Zero-solution.

. The equation AX == b hasat least one solution for any b in R". The equation AX == b has a unique solution for any b
inR".

. The columns of A form alinealy independent set.

. The columns of A spanR".

. The linear transformation T[x] := A X: R" - R" is one-to-oneand onto.
. Thereisan n x n matrix C such that A C==I.

. Thereisan n x n matrix D such that D A==I.

. AT isan invertible matrix.

. The columns of A formsabasis of R".

. Col[A]==R".

. Dim[Col[A]]==n.

. Rank[A]==n

. Nul[A]=={0}.

. Dim[Nul[A]]==0.

. The number O is not an eigenvalue of A.
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5 Vector spaces

5.1 Vector Spaces and Subspaces

m Vector Space definition

A Vector Space isanonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplica
tion by scalars (real or complex), subject to the ten axioms listed below. The axioms must hold for all vectorst, V, and WwinV
and for all scalars ¢ and d.
1 Thesumof U and V, denoted by U + V, isin V.
U+V=V+U.
(G+\7) +W=1U+ (\7+\Tv).
ThereisaZero vector 0 inV suchthat G + 0 == U.
Foreach T in V thereisavector -U inV suchthat G + (-0) == 0.
The scalar multiple of U by c, denoted by c U, isin V.
C <ﬁ +\7> ==cU + CV.
(c +d)yti==cU + du.
c (du) ==cd)

1U-=1.

© o N g~ Wb

<l

—

=
©

= Alternativedefinition of a vector space

Let K beadivisionring. A vector space over K is an ordered triple { E,+,.} such that { E,+} isan abelian group and . isafunction
fromK x E into E satisfying
*c. (U+V) =c.U+c.V

e(c+d).U=c.U+cC.V
*(c«d).U=c. (d. U
ellU=1U

foral G,V e Eand dl ¢, d € K. Elements of E are called vectors, elements of K are called scalars, and . is called scalar multipli-
cation.

Similarly, {R",+,.} isavector space over R for eachn e N.

m Corollaries

The zero vector O in any vector space is unique, and the vector -Ui is unique for each i in V, and
1 0*t==0
2. c*0==0
3. -U==(-1)*u
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My Proof of -u==(-1)*u.

0==0u (corollary 1)

0 u==(1-1) u (property of arithmetic)
(-1)) u==1u+ (-1) u by axiom 8.

lu+(-))u==u+(-u by axiom 10. Connection previous equation to get
u+(-1) u==0

(-u)+u+(-1) u==0 + (-u)  Add (-u) to both sides.

0 + (-1) u==-u by axiom 4 and 5.

(-1) u==-u

m Subspace of a Vector Space

A subspace of avector space V isasubset H of V such that H isitself avector space under the same operations of addition and
scalar multiplication that are aready defined on V.

= Subspace Test

A subset H of of vector space V is asubspace of V iff the following conditions are all satisfied:

1 The Zero vector of V isin H.
2. IfGdandV arein H, thent + V isin H.
3. If UisinH and cisany scalar, thenct isin H.

m Spanning Set and Subspace

Givena;, ..., a@,inavector spaceV,theset Span[{a;, ..., a@n}]isasubspaceof V.
Wecall Span[{a;, ..., &n}] the subspace generated by {@;, ..., &n}.Givenany subspace H of V, a spanning set for H
isaset {@y, ..., & inHsuchthatH==Span[{a;, ..., an}].

5.2 Null Spaces, Column Spaces, and Linear Transformations

= Null Space

Given an m x n matrix A, the null space of A (denoted Nul[A]) is the set of all solutions to the homogeneous equation A. X == 0.
In set notation,

NUul[A] :={X: X isinR" and A. X == 0}
Nul[A] isthe set of all X in R" that are mapped into the zero vector of R™ by the linear transformaiton A X.

m Column Space

Given an m x n matrix A, the column space of A (denoted Col[A]) isthe set of al linear combinations of the columns of A. In set
notation,

Col[A] :={b:bisinrR™and b == A. X for someX inR"}

Column space isjust the range of alinear transformation.
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The null space of an m x n matrix A is a subspace of R".
The column space of an m x n matrix A is a subspace of R™.

When talking about linear transformation, null space and column space are often called kernel and range respectively. Kernel is
the set of X such that T[x]==0, and range has the usual meaning for a function -- al possible outputs.

5.3 Linearly Independent Sets; Bases

m definition: Linearly Independence

A Set {\71, ce \7n} of two or more vectors, with v, # 0, islinearly dependent iff someV; (withj > 1) isalinear combina-
tion of the preceding vectors.

We require v, + O because, suppose we have an ordered set S := {6, U}. Thisis alinearly dependent set by definition, but
there are no V; (withj > 1) that is alinear combination of the preceding vectors, V4, ..., Vj 1;inother words, U # ¢ 0. On

the other hand, if S:= {T, 0}, wehaveO = 0 G, thus showing Sislinearly dependent as the theorem dictates.

Question: why can't the definition be that "there are no vector that is alinear combination of two or more vectorsin the set?"

m definition: Basis of a Vector Space

Let H be a subspace of avector space V. Let B be aset of vectorsinV. B isabasisfor H if
1 B isalinearly independent set.
2. the subspace spanned by B isequal to H.

Note: the set {0} do not have a basis because {0} is dependent by definition.

Lete;, ..., €,bethecolumnsof then x nidentity matrix In. Theset {€;, ..., &} iscalled the standard basisfor rR".

m The Spanning Set Theorem

LetS:={Vy, ..., V,} beasetinvector space.

* Suppose V in Sisalinear combination of the remaining vectors, and S2 is a set formed by removing the element vV, from S,
then Span[S]==Span[S2].

« If Span[S] # {0}, some subset of Sisabasis for Span[S).

Note: Sdo not have abasisif S:={0}. That's why we require Span[S]+{0} in the theorem.

m Basis of Col[A]
The pivot columns of amatrix A formsabasisfor Col[A].

The following theorem is"my own". It'sincomplete. | need to complete the theorem statement and proof.
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Let V and W be vector spaces, let T: V — W be a linear transformation, and let S={Vj, ..., Vi } be asubset of V, and

S:={T[Vi], ..., TV}

« If Sislinearly dependent in V, then S, islinearly dependent in W.

* If S, islinearly independent in V, then Sislinearly dependent in W. ?7?
If T isone-to-onetransformation, then

« Sislinearly dependent iff S, islinearly dependent.

* Sislineary independent iff S, islinearly independent.

My Proof:
Suppose Sis linearly dependent. Whether S2 is linearly dependent depends on whether cl==c2==...==ck==0 is the only solution
to the equation

¢l T[vi] + c2 T[v2] +... + ck T[vk]==0 iff

T[clva] + T[c2 v2] +... + T[ck vk]==0 iff

T[cl vl + c2v2 +... + ck vk]==0 iff

(c1v1+c2v2+... + ck vk==0 or T[b]==0 for someb # 0)
The theroems above easily follows from here.

A vector equation of the form ¢l v1 + ¢c2 v2 +... + ck vk==b has either one solution, infinitely many solution, or no solution. Need
to seeaproof. To Do.

5.4 Coordinate Systems

= theorem: The Unique representation

Let B := {Bl, by, ..., Bn} be a basis for a vector space V. Then for each X in V, there exists a unique set of scalars
Ci, ..., Cp,suchthatX =cqy by +... +cpbp.

Proof:
Suppose there are two representations x == Sum[ci*bi {i,n}] and x == Sum[di*bi {i,n}].
Subtract the equations we have
zeroVector == Sum([(ci-di)*bi,{i,n}]
Since al bi are linearly independent, thus al (ci-di) must be 0, which means ci==di for all i.

m Definition: Coordinates

Suppose the set B := {51, Bg, Bn} isabasisfor V and X isin V. The Coordinates of X relative to the basis B are the weights

Ci, ..., Cpsuchthat X =cy by +... +cp b

m X {X},is one-to-one and onto

Let B := {51, R Bn} be an ordered basis for a vector space V. Then the coordinate mapping X + {X}; is a one-to-one

linear transformation from V onto R".
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5.5 The Dimension of a Vector Space

= Number of Vectors in Basis

« If avector space V has abasis B:={Bl, Cey Bn}, then any set in V' containing more than n vectors must be linearly depen-

dent.
« If avector space V has abasis of n vectors, then every basis of V must consist of exactly n vectors.

m Dimension of V

If V is spanned by afinite set, then V is said to be finite-dimensional, and the dimension of V, written as dim[V], is the number

of vectorsin abasis for V. The dimension of zero vector space {0} is defined to be zero. If V is not spanned by a finite set, then
V issaid to be infinite-dimensional.

m Linear Dependence, Span, Dimension and Basis

« Let H be a subspace of afinite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to
abasisfor H. Also, H isfinite-dimensional and dim[H] < dim[V].

« Let V bean n-dimensional vector space, n = 1, and let S be a subset of V that contains exactly n elements. Then:

* |f Sislinearly independent, then Sisabasisfor V.

* |If SspansV, then Sisabasisfor V.

The dimension of Nul[A] is the number of free variables in the equation A . X == 0, and the dimension of Col[A] is the number of
pivot columnsin A.

5.6 Rank

m Basis for Row Spaces

If two matrices A and B are row equivalent, then their row spaces are the same. If B isin echelon form, the nonzore rows of B
form abasis for the row space of A aswell as B.

= Rank

The rank of A isthe dimension of the column space of A.
The dimensions of the column space and the row space of an m x n matrix A are equal. This common dimension, the rank of A,
a so equals the number of pivot positionsin A and satisfies the equation

Rank[A] + Dim[Nul[A]]==n
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6 Eigenvectors and Eigenvalues

6.1 Eigenvectors and Eigenvalues

m Eigenvector and Eigenvalue

An eigenvector of an n x n matrix A is a nonzero vector X such that A. X == X = X for some scalar A. A scalar A iscalled an
eigenvalue of A if thereisavector X # 0 suchthat A. X == A « X; such an X is called an eigenvector corresponding to A.

Eigenspace:

Suppose A. X = A X, then
AX-AX=0
(A-21).Xx=0

The null space of (A-A 1) iscalled the eigenspace of A correspondingto A.

m triangular matrix and eigenvalue
Let A be atriangular matrix. Then the eigenvalues of A are the entries on its main diagonal.

Proof iseasy. Look at the matrix (A-A*1). The column vectorsin this matrix must be linearly independent, and the only way is for
A to equal to some of the diagonal entries.

m Linear independence of engine vectors

If vy, ..., V, areeigenvectors that correspond to distinct eigenvalues A1, ..., A, of an n x n matrix A, then the set
{Vi, ..., V| islinearly independent.

Proof:

If {\71, cel, \7r} islinearly dependent, then there is aleast index p such that V., isalinear combination preceding (linearly
independent) vectors, and there exist scalarscy, ..., Cp suchthat

SPiCi Vi ==Vp,1 (*5%)

Multiplying both sides by A and using the fact that A. V|, == X V| for each k, we obtain
2}0:1 ci A \7i == A \7p+1

ST Ci A Vi == A, Vp,a (*6Y)

Multiplying both sides of (*5*) by 1., and subtracting the result from (*6*), we have

SPaci (A - 2p.1) Vi ==0 (*7)

Since {Vy, ..., Vp} islinearly independent, the weightsin (*7*) are all zero. But none of the factors (2 - p.1) are zero,
because the eigenvalues are distinct. Hence ¢; ==0 for i=1,...,p. But then (*5*) saysthat Vp,; = 0, which isimpossible. Hence

{Vi, ..., Vi } cannot belinearly dependent and therefore must be linearly independent.
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6.2 The Characteristic Equation

m Determinant

One way to define determinants is as follows: For an n x n matrix. We row reduce it to echelon form using the following meth-
ods:

* Replace arow by the linear combination of other rows.

* Interchange a row with another row.

(in particular, scaling of arow by itself is not allowed.)

The determinants of A isthe product of the diagonal entriestimes (- 1) ", wherer isthe number of times we interchanged rows.

If the matrix is not invertible, it will contain a0 inits diagonal, and thus the determinant will be 0.

If A isa3 x 3 matrix, then Abg[Det[A]] is the volume of the parallel epiped defined by the column vectors of A.

= Properties of Determinants

Let A and B be an n x n matrices.

e Aisinvertibleiff Det[A] # 0

* Det[A.B]==Det[A]* Det[B]

* Det[AT]==Det[A]

« If A'istriangular, then Det[A] isthe product of the entries on the main diagonal of A.

* A row replacement operation on A does not change the determinant. A row interchange changes the sign of the determinant. A
row scaling also scal es the determinant by the same scalar factor.

Proofsin D.C.Lay, chapter 4.

m characteristic polynomial
The scalar equation Det[A - A*1]1==0is called the characteristic equation of A.

A scalar A isan eigenvalue of an n x n matrix A iff A satisfies the characteristic equation Det[A - A 1]==0.

Thisis so because:
A.X==A*X

A X-A*x==
AX-A*] x==
(A-2*1).x==0.

= similar matrixes

If A and B are n x n matrices, then A is similar to B if there is an invertible matrix P such that P-1. A. P == B. (which implies
A==P.B.P"-1)

Xah's note: | think: in group theory, thisideais called conjucate class. i.e. two elements a and b are in the same conjucate class if
there exist an element p, such that p*-1* a* p==h.
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theorem: similar matrixes has the same eigensystem
If n x nmatrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues.

Proof: If B==P-1.A.P, then

B-Ax1==P1 A P-2x«P?l P==PL(APA*P)==PL(A-2*])P

using the multiplicative property of determinants, we have
Det[B-A*1]==Det[P-1.(A-1*1).P|==Det[P-1]* Det[(A-1*])]* Det[P]==Det[P-1]* Det[ P]* Det[ (A-A*I)]==Det[P-1.P]* Det[ (A-A*I)]
==Det[(A-1*1)]

Some common algorithmsfor estimating the eigenvalues of a matrix is based on the above theorem. They include QRDecomposi-
tion and Jacobi's method. See p.287 of David C.Lay.

m Diference equations and dynamic systems

Eigensystem is the key to difference equations and dynamic systems. For example, we are given the vector sequence
f[0]:=a
f[n]:=A.f[n-1]

This sequence can be written as
fn]:=A"2a

One can avoid the multiplication of matrices by using eigensystems. Suppose A is 2 x 2 and we have the eigensystems
{0, A2}, {Uy, U2}}.

Remember that A”n.x==A"n.x for eigensystem A and Xx.
Writed in terms of eigenvectors (this can be done since the eigenvectors forms a basis). Supposewe havea == ¢4 G, + ¢, U»

Now,f [n] == A". @ == A". (c1 Uy +Cp Up) ==Cg A". Uy +Cp A". Up == C1 A] Uy + C2 A3 U
thus
fn] ==cy AUy +cy AR U,
Thisis aclosed form of f[n]. The closed form facilitate computation and analysis of the behavior of f[n]. We may use it to find
Limit[f[n],n->Infinity].

6.3 Diagonalization

= definition: Diagonalization

A sguare matrix A is said to be diagonableif A issimiliar to adiagonal matrix, that is, if A==P.D.P*-1 for some invertible matrix
P and some diagonal matrix D.
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= theorem: Diagonalization

Annxnmatrix A isdiagonalizableiff A hasn linealy independent eigenvectors.
If A==P.D.P*-1 where D is diagona, then the diagonal entries of D are eigenvalues of A and the columns of P are the correspond-
ing eigenvectors.

Proof:
Let ul, u2,... be independent eigenvectorsof A, and A1, A2,... be the corresponding eigen values.
We have
[AULA.U2..]==[AT*ulA2*u2..] (*1*)
which can be rewriten as
A.P==P.D
by the given definition of matrix P and D. Since ui are independent, P*-1 exist. Right multiply both sides by P*-1 we have
A==P.D.P*-1
This proves the half of first part of the theorem. Now, if given A==P.D.P*-1 for some P, D, we can use (*1*) to show that
A.ui==ci*ui by equating columns. Now, since ui for all i are independent and none are zero vectors, it showsthat ci are eigenval-
ues corresponding to the eigenvectors ui.
The second part of the theorem is also proven in the process.
End of proof.

= theorem

Let A be an n x n matrix whose distinct eigenvaluesare A_1,...,A_p. For k:=1,...,p, let B_k be a basis for the eigenspace corre-
spondingto A_k. Let B be the union of B_1,...,.B_p. Then B islinearly independent.

Notes: recall that eigenspace of an eigenvalue A is defined to be all eigenvectorsthat has A as their eigenvalue. That isto say, an
eigenvalue may have more than one linearly independent eigenvectors. The theorem does not say an n x n matrix will always
have n eigenvectors. If only saysthat if A has n linearly independent eigenvectors, then A is diagonalizable.

Proof: (need editing)
Suppose A_1,...,A_n are the distinct eigenvalues of matrix A. Suppose B_i are eigenvector bases corresponding to A_i and each
B_i has dimensions Length[B_i].
Lets i be:=Sum[c_i_j*B_i[[j]].{j,Length[B_i]}].
surfeit to say that if Sum[s_i,{i,n}]==zeroVector, then s_i==0 for all i. Thisis so because eigenspace of different eigenvalues has
no intersection. Thus, the aboveimpliesall c_i_j==0in
Sum[c_i_j*B_i[[j1].{],Length[B_i]}]==zeroVector
Whichinpliesal c_i_j==0in
Sum[(c_i_j*B_i[[j1D{i.n} {j,Length[B_i]}]==zeroVector
Thus B islinearly independent.



18| linearAlgebraNotes.nb

aredl zero.
Weknow that ¢_j==0in Sum[(c_j),B_i[[j]].{j.,n}]==zeroVetor.

Sum[Sum[(c_i_j*B_i[[j]]).{j,Length[B_i]}].{i.n}]
Supposeb_i_misan eigenvector in B_i.
Sum[Plus@@(c_i_j*B_i),{i,n}]==zeroVector

and all c_i_j must be zero.
This means each of Plus@@(c_i_j*B_i)==zeroVector.

6.4 Eigenvectors and Linear Transformation

= theorem: Diagonal Matrix Representation

Suppose A:=P.D.P*-1, where D isadiagona x x n matrix. If B isthe basisfor R" formed from the columns of P, then D isthe B-
matrix of the transformation X ~ A. X.

Proof: (verbatim from the book. Needs editing.)

Denote the columnsof Pby b_1,....b n, sothat B={b_1,...b_n}, and P=[b_1 ... b_n]. In this case P is the change-of-coordinates
matrix P_B discussed in Section 5.4, where

P[X]_B == x and [x]_B==(P"-1).x

If T[x]==A.x for x in R*n, then

[T]_B==[[T[b_1]]_B ... [T[b_n]]_B]

==[[A.b_1] B ...[A.b_n]_B]

==[(P*-1).A.b 1.. (P*1).A.b n]

==(P*-1).A.[b 1..bn]

==(P*-1).A.P

Since A==P.D.(P*-1), we have [T]_B==(P"-1).A.P==D.

6.5 Complex Eigenvalues

linear map of an abstract vector space (xah's note)

To define alinear map T, we don't have to know the image of every element in V. We only need to know the image of a set of
vectors that is a basis for V. This is so because the property of linear map that L{at+b]==L[a]+L[b] and L[a*a==a*L[4d]. In
particular, every vector can be written as linear combinations of the basis vectors, thus we can find their image. (Greek letter
denote scalars.)

It is extremely convenient to find the isomorphism between an abstract linear space and the linear space in R*n, because the latter
can be computed more easily, and linear map can be written as matrixes.
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The following describes the method of finding an isomophic vector space in R*n from a given abstract vector space.
Given an dimentiona linear space {V,+*} over R*1. Suppose B is a basis. A linear mapping T is defined by specifying the
images of basis vectors. i.e., we know the value of T[b[k]] for 1<=k<=n. Let us use B as the coordinate basis. We want to find the
matrix A corresponding to T. Let {b[k]} denote the coordinates of b[k] with respect to basis B. Let {g[k]} denote the standard
basis, that is: {€1]}=={1,0,0,0,...}, {€[2]}={0,1,0,0,...}, etc. The coordinates of b[k] with respect to B is {€[k]}, i.e.
{o[K]}=={e[K]}.
Now, the coordinates of T[{b[k]}] can be denoted as{ T[{b[k]}1}.
Let x be avector in R™n. x[i] beitsith coordinates. We can write x as Sum[x[i]*{ €[i]} {i,1,n}]. Now,

TIX]==T[Sum[x[i]*{efi]} {i,L.n}]]==Sum[x[i]* T[{ e[i]}] .{i,1.n}]
Thus we see that kth column of matrix A is{T[{b[K]}]}.

7 Orthogonality and Least-squares

7.1 Inner Product, Length, And Orthogonality

= |nner product definition

The inner product of vectors u and v in R*n is defined to be Sum[u[i]*Vv[i].{i,1,n}], where u[i] and v[i] are the elementsin u and
V.

m Properties of inner product

Let u, v, and w be vectorsin R*n, and let c be a scalar.
u.v==v.u

(u+v).w==u.w+v.w

(c*u).v==c(u.v)==u.(c.v)

u.u>=0, and u.u = 0 iff u==0.

= Length of a vector

The length (or norm) of V isthe nonnegative scalar ||V|| defined by ||V} : = \/ V. V

m Distance

For G and V in R", the distance between them is defined to be ||t - V||.

= Orthogonality

Two vectorsu and v in R*n are orthogonal (to each other) if u.v==0.
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The motivation for this definion:

We want to look at vectors as lines in Euclidean space, and define orthogonality as being perpendicularity. Suppose u and v are
vectors. They are orthogonal if the distance from u to v and u to -v are equal. Using Pythagorean theorem, the distance from u to
Vis

lu-vI|[==[lulI"2 + [IV|I"2 - 2*u.v

The distance fromuto-vis

lu+vI==(lUlI"2 + [|VII"2 + 2€u.v

we see that they are equal iff u.v==0.

= Pythogorean Theorem

Two vectorsu and v are orthogonal iff |Ju+v||"2==||u||"2+]|v||"2
(thisfollows directly from defitions)

= Orthogonal Complements

Let W be a subspace of R*n, let z be a vector. If z is orthogona to every vector in W, then z is said to be orthogonal to W. The set
of vectors that are orthogonal to W is called the orthogonal complement of W, written as W+ or +[W].

= theorem:

A vector visin +[W] iff v isorthogonal to all vectorsin a set that spansW.

Proof:
Let{al,....an} be aset of basis vectors for a subspace W of R*n.
Given: v is orthogonal to ai for all i. This means ai.v==0 for all i.
Wewant to prove that v is orthogonal to any linear combinations af ai. This means
Sum[ci*ai {i,n}].v==
where ci are scalars. By properties of inner product, the equation is equivalent to
Sum[(ci*ai).v,{i,n}]==
Sum[ci*(ai.v),{i,n}]==0
Sum[ci*0,{i,n}]==0
This proves half of the first statement.
If b.v==0for all bin W, then it means
Sum[(ci*ai){i,n}].v==0
by inner product property,
ci*ai.v==0for al i.
ai.v==
End of proof.

m dimensionsof +[W]

Let W be any vector space. The dimension of +[W] is 1.
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Proof:
Let x be anon-zero vector in W. Suppose b1, b2 are basis vectorsin -[W], thus +[W] has dimension 2.
If followsthat b1.x==0, b2.x==0, and (b1+b2).x==0. Combine the equations we have
(b1+b2).x==b1.x
For vectors ul,u2,v, ul.v==u2.v iff ul==u2, thus
bl+b2==bl
b2==zeroVector
but this cannot be because basis vectors cannot be zero vectors. Thus, bl and b2 cannot be a basis for +[W], and +[W] cannnot
have dimension 2. Similarly, if bl, b2, b3 are basis for .[W], we can show that (b1+b2+b3)==b1, b2+b3==zeroVector, and this
cannot be because b2 and b3 are independent. Similarly, +[W] cannot have dimensions greater than 1.

= Theorem: Orthogonality, row space, null space, and column space

Let A be an m x n matrix. Then the orthogonal complement of the row space of A is the nullspace of A, and the orthogonal
complement of the column space of A isthe nullspace of 7TA]. In symbols,
+@Row[A]==NUI[A], +@Col[A]==T@NUul[A]

= Proof

The row-column rule for computing A.x showsthat if x isin Nul A, then x is orthogonal to each row of A (with the rows treated
as vectorsin R*n). Since the rows of A span the row space, X is orthogonal to Row A. Conversely, if x is orthogonal to Row A,
then x is certainly orthogonal to the rows of A, and hence A .x==0. This proves the first statement. Thesecond statemenfollows
from the first by replacing A with 7TA] and using the fact that Col[A]==7T@Row[A].

7.2 Orthogonal Sets

m orthogonal set and linear independence

A set of vectors{ul, ... ,up} inR" issaid to be an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is,
if ui.uj==0 whenever i#j.

If S={V1, ..., Vp}isanorthogonal set of nonzero vectorsin R", then Sislinearly independent.

Proof:

We want to show that the only solution to the equation 0 == Z,-p:1 c; V; isforc; == 0fordli. Multiply both sides by V; to obtain
0==0.Vy= (57 4¢ * Vi).Vy

by distribution property, we have
0= (P ici«(Vi.v1))

Since elements of S are pairwise orthogonal, their dot product is 0, thus we have
0 = Cq * (\71\71>

which showsthat ¢, isO. Similarly, al other scalers must be 0. End of Proof.

= computing coordinates wrt a given orthogonal basis

Let {\71, ce, \7p} be an orthogonal basis for a subspace W of R". Let y be a vector in W. The coordinates of y with respect
tothebasisisTabl e[ (Y. Vi) / (Vi. Vi), (i, 1, p}].
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Proof:
wewant to show that ¢; == (¥. V; ) / (V;. V; ) isasolutiontothe equationy == SPci %V,
To solve the equation, dot both sides by V;, we get
y.Vy == <c1 *\71) .V
(most vector terms are eliminated because their dot product is zero)
Isolate ¢, to solve one coordinate. Other coordinates can be solved similarly.

= orthonormal set
A set {ul, ... ,up} isan orthonormal set if it isan orthogonal set of unit vectors.
Anm x n matrix U has orthonormal columnsiff (7@U).U==I.

Proof: (See D.C.Lay)

The proof for the general matrix is tedious, though not much insight. Essentially, the steps are to carry out the product showing
each matrix entry in detail, and show that in order for the columnsin U to be orthonormal, certain product of elements must be O
or 1, and when this occurs, the whole thing equals to the identity matrix.

= length and orthogonality invarience

Let U be an m x n matrix with orthonormal columns, and let X and y beinR". Then
(@ IU.XII==lIx|

(b) (UX).(U.y)==X.y

(©) (UX).(U.y)==0iff X.y==0.

Property (a) and (c) say that the linear mapping X — U. X preserves lengths and orthogonality. Proof should be easy.

7.3 Orthogonal projection

m The orthogonal Decomposition theorem

Let W be a subspace of R" that has an orthogonal basis. Then each y in R" can be written uniquely in the form
y=a+Z <1>>
whered isinW and b isin @W. Infact, if {Ty, ..., Uy} isany orthogonal basisof W, then

= p y. G
=", (ﬁi-

mEyyp ) <<2>>
Ui

and
Z:=y-a
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Proof:

Let {Gl, ce, Up} be an orthogonal basis of W, and define a as in the theorem. Clearly, d isin W because 3 is a linear
combination of thebasist;, ... Up.LetZ:=y -a

Since; isorthogona touy, ..., up, it followsfrom <<2>> that

Z.Up= (y-8).U=Y. 0U-& 0

substitute a by its definition, and distribute, we have

oo s N y. Uy
y.u; —a. U ::y_ul,( —

T *al). Uy = V.0 -y.Uy =0
thus Z is orthogonal to T4 . Similarly, z is orthogonal to each uj in the basis for W. Hence z is orthogonal to veery vector in W.
Thisis, zisin t@W.
To show that decomposition in <<1>> is unique, suppose that y can aso be written as y==al+z1, withal in W and z1 in WAL,
Then atz== al+z1 (since both sides equal y), and so

aal==z1-z
This equality shows that the vector v==a-al isin W and in W"+. (because z1 and z are both in W+, and W”+ is a subspace)
Hence v.v==0, which showsthat v==zero. This provesthat a==al, and also z1==z.

Property of orthogonal projection:
Let W=Span[{ul,...,up}]. Let y be avector in W. Projection[y,W]==y.

m The best approximation theorem

Let W be a subspace of R™n, y by any vector in R*n, and va be the orthogonal projection of y onto W determined by an orthogo-
nal basis of W. Then vaisthe closest point in W to y, in the sense that

lly-vall<lly-v|| <<3>>
for al vin W distinct fromy.

Proof: Take v in W distinct from va. Then v-vaisin W. By the Orthogonal Decomposition Theorem, y-vais orthogonal to W. In
particular, y-vais orthogonal to v-va. Since

y-v==(y-va)+(va-v)
The Pythagorean theorem gives

(ly-vih~2==(lly-val)"2+(lva-v)"2

Now (|lva-v|[)*2>0 because va-v=!=zero, and so the inequality in <<3>> isclear.

If {ul,...,up} isan orthonormal basis for a subspace W of R*n, then
Projection[y,W]==Sum[(y.ui)*ui,{i,1,p}] <<4>>

Let the matrix U has column vectors ul,...,up. Then,
Projection[y,W]==U.U".y, for al y in R*n. <<5>>

Proof:

Formula <<4>> followsimmediates from <<2>>. Also, <<4>> showsthat projection[y,W] is alinear combination of the columns
of U using the weights y.ui. The weights may be written as U"T _i, showing that they are the entries in U"T.y and justifying
<<5>>,
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7.4 The Gram-Schmidt process

m 7.4 The Gram-Schmidt process

Given abasis{x1,....xp} for asubspace W of R*n, define
v 1=x1

v_p:=x_p- Sum[((x_p.v_)/(v_i.v_i)*v_i{i,1,p-1}]
Then {v1,...,vp} isan orthogonal basis for W. In addition,
Span[{v1,...,vk}]==Span[{x1,...,xk}] for 1<=k<=p.

Proof:
For 1<=k<=p, let W_k:=Span[{x1,...,xk}]. Set v1:=x1, so that Span[{v1}]==Span[{x1}]. Suppose that for some k wehave
constructed v1,...,vk so that {v1,...,vk} isan orthogonal basisfor W_k. Define

v_(k+1)==x_(k+1)-Projection[x_(k+1),W k]
Note that Projection[x_(k+1),W_Kk] isin W_k and hence alsoin W_(k+1). Since x_(k+1) isin W_(k+1), soisv_(k+1). Further-
more, v_(k+1)!=zero because x_(k+1) isnot in W_k:=Span[{x1,...,xk}]. Hence {v1,...,v_(k+1)} is an orthogonal set of nonzero
vectorsin the (k+1)-dimensional space W_(k+1). By a therome about number of indepedent vectors spans n-dimensional space,
this set isan orthogonal basis for W_(k+1). Hence W_(k+1)==Span[{V1,...,v_(k+1)}]. After p steps, the process stops.

Idea:
The idea of Gram-Schmidt process isto use projection to go through each of the vectors. For each vector, project it onto the space
previously found, thus obtaining a orthogonal basis one by one.

m QR Factorization

If A isan m x n matrix with linearly independent columns, then A may be factored as A==Q.R, where Q is an m x n matrix
whose columns form an orthonormal basis for Col A and R isan n x n upper triangular invertible matrix with positiveentries on
its diagonal.

Proof: The columns of A form a basis {x1,...,xn} for Col A. Construct an orthonormal basis {v1,...,vn} for W=Col A with
property <<1>> in theorem 11. This basis may be constructed by the Gram-Schmidt process or some other means. Let
Q:={vliv2..vn}
For k:=1,...,n, x_k isin Span[{x1,...,xk} ]==Span[{v1,...,vk}]. So there are constants, r_1Kk,...,r_kk, such that
x_k==r_1k*v_1+..+4r_kk*v_k+0.v_(k+1)+...+0.v_n
we may assume that r_kk >=0. (if r_kk<0, multiply both r_kk and v_k by -1) This showsthat x_k is alinear combination of the
columns of Q using as weightsthe entries in the vector
r_k:={r_1k,...,r_kk,0,...,0}
That is, x_k==Q.r_k for k:=1,...,n. Let R:={r1,...,rm}. Then
A=={x1,..xn}==[Q.r_1,...,Q.r_n]==0QR
The fact that R is invertible follows easily from the fact that the columns of A are linearly independent. Since R is clearly upper
triangular, its nonnegative diagonal s entries must be positive.
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Questions

= number of eigen values

What is the relation between a given square (real) matrix and the number of (real) eigen values it has? (I suppose if complex
numbers and multiplicity are counted, then it's always the same as the dimension of the matrix?)

prove or study: The set of eigenvectors always spans row space?

Suppose A isan x nmatrix. | think that if we allow complex eigen values, then A always have n independent eigenvectors.

m characteristic polynomial

What is the relation between characteristic polynomial and matrix without using determinants?i.e. | wish to see the connection of
linear mapping and its characteristic polynomial, through aspects other than incomprehensible determinants or row reduction.

From: Robin Chapman <rjc@maths.ex.ac.uk>
Newsgroups: sci.math

Subject: Re: matrix and its polynomial

Date: Wed, 24 Jun 1998 07:49:18 GMT
Organization: University of Exeter

In article <yo33ecvwuba.fsf @shell 13.ba.best.com>,

Xah Lee <xah@shell13.ba.best.com> wrote;
> * How to define the characteristic polynomial of a square matrix
> without involving determinants?

Let A be an n by n matrix over afield k. The characteristic polynomial of
isthe product of (X - a j)(n_j) wherethe a_j are the distinct eigenvalues
of A over an algebraic closure of k, and n_j is the dimension of the
nullspace of (A -a j I)*n.

Robin Chapman + "They did not have proper
Department of Mathematics - pamsat homein Exeter."
University of Exeter, EX4 4QE, UK +
rjc@maths.exeter.ac.uk - Peter Carey,

http://www.maths.ex.ac.uk/~rjc/rjc.html +  Oscar and Lucinda

m Relation between Null space and Column space

There isatheorem in basic linear algebra that says:
"Let A bean m x n matrix. Then the orthogonal complement of the row space of A isthe nullspace of A."

Isthere a geometric insight that makes this apparant?
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m Transposition as a linear function

« Isthere a square matrix B such that B A==AT for any square matrix A?

Partial Answer: It seemsyes.

To Do: Provethis, and find a general formulafor B given A.

« Can we think of transposition of square matrices as one-to-one function for such matrices, and the fixed point of this function is
al the identity matrices.

My Answer: Yes.

m vector space always a sub space?

Isavector space always a subspace of some vector space other than itself?
I think: A vector space may not be a subspace of some other vector space. For example: R"3 is a vector space, but it is not a
subspace of any other vector space, it is a subspace to itself only. Not True, because
R”3:={{ab,c}|a b, c are real numbers}.
We can defined another set
M :={{ab,c}| a b, c are complex numbers},
thus it can be shown that R”3 proper subset of M , and since (i think) M is a vector space, so after all R”3 is a subspace of some
other vector space.
Now, is M a subspace of some other vector space?
In general, maybe we can always concoct a vector space V, so that the given vector space is a subset of V, thus a subspace of V.

ToDo
Prove: Let A, M, N be matricies. Show that A M + A N==A (M + N).

Coordinate permutation

= Coordinate permutation

What kind of structural change occur to column vectors in a matrix during the process of row operation? Perhaps write a mma
program illustrating this for 2D and 3D vectors.

1998/03/19.

Suppose we have a point with coordinates { a,b,c} . Now there are six permutations of its coordinate. If we connect all six points
to each other, what kind of shape will it form? Especially consider a moving point. The problem can be generalized to higher
dimesions.

I thought of it when studying linear algebra, on the paragraph that says "row operations does not change the linear dependence of
the original's column vectors'.
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= Solution

Some experiments with mma graphics shows that they are in general a six sided regular polygon lying on a plane, and the
polygon has symmetry of that an equiangular triangle.

After thinking, here's my conclusion:

In the 2D analogous problem, the line x==y acts like a mirror. Similarly, the 3D problem have 3 planes that are mirrors. Each
plane is the symmetric plane between any two axes. If a point does not lie in one of these planes, then it will be reflected and
results 6 points. The 6 points form a hexagon centered on the line x==y==z and orthogonal to it, and it has symmetry of that an
equiangular triangle. If we start with two or more points in 3D, then | imagine the result shape would be a prism-shaped in
general, with both ends that of a hexagon. So it isn't very interesting. Before this, | thought the answer is some projection of
higher dimension objects.

Needs [" Graphi ¢cs” Pol yhedra™ "]
Needs [" GLExpl orer * GLRenderer ™ "]
Set Opt i ons [gl MCr eat eW ndow, Spin -> True, LockLi ghts -> Truel;

G.Show[G aphi cs3D[ {Fi r st @Pol yhedr on [Cube, {0, 0, 0}, 0.2],
({ (Fi rst @Pol yhedron [Tetrahedron, #, 0.05] &) /e#l, (Line[{{0, O, 0}, #1}] &) /e#l} &) e
Pernut ati ons @Tabl e[l f [Random[] > .5, 1, -1] » Random[], {3}]1}], Axes -> True,
AxeslLabel -> {"x", "y", "z"}, PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}}, Ticks -> None]J;

Geometry flavored questions

m characteristic of sense-reversing mapping

Given A .x, how do we know that this mapping reverse sense?
A: probably by comparing a oriented triangle and itsimage.

m characteristics of one-to-one mapping

Suppose we have a non-linear continuous mapping from R*n to R"m, with domain equal to R*n.
How can we tell whether this mapping is one-to-one?

m geometric view of linear mapping that has maximum number of eigenvalues

Suppose A isan n by n square matrix.
Conjecture: A has maximum of n eigen values.
Conjecture: There exist an n by n matrix A with n eigen values, for any positive integer n > 1.

Question:
Suppose A isamatrix for a linear mapping from R"2 to R"2, with two eigenvalues. | am unable to see intuitively the geometry

aspect of such mapping.
If A isan n by n matrix with n eigen values. This means that the transformation has n lines that act like fixedpoints. Take n=2
case. For example, the matrix {{3,-2} {1,0}} has two independent eigen vectors{{ 1,1} ,{2,1}} and they are not orthogonal .

Answer: For the 2D case, view it as parallel projection of two planesin 3D. Similarly, higher dimension problem can be visual-
ized using projection.
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Needs [" Tr ansf or n2DPl ot * " ];

Wth[{matrix = {{3, -2}, {1, 0}}. {{Cosea, Cos[2*Pi /4+al}, {Sin[a], Sin[2*Pi /4+a]}} /.
a->2xPi 74}, Transforn2DPl ot [matri x. {#1, #2} & {-1, 1}6, {-1, 1} 6, Prolog ->
First @TransfornDPl ot [{#1, #2} & {-1, 1} 6, {-1, 1} 6, DisplayFunction ->ldentity],

Epil og -> {Hue[.7], Line /@Transposee (6 {-1 »#, #} &) @Ei genvectorsenatrix},
Pl ot Range -> {{-1, 1}, {-1, 1}}7171;

Wthi{matrix = {{3, -2}, {1, 0}}. {{Cosea, Cos[2*Pi /4+al}, {Sin[a], Sin[2+Pi /4+al}} /.
a->-2%Pi /74}, (Transforn2DG aphics [#, matrix. {#l, #2} & Prolog -> #,
Epil og -> {Hue[. 7], Line /@Transposee@ (6 {-1 =#, #} &) @Ei genvectorsenatrix},
Axes -> True, AspectRatio -> Autonmatic, Resol utionLength ->0.2] & e
(PolarGid[{0, 6, .1}, {1, 2, .1}, {Hue, G aylLevel [1-#] &}])];
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