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How real are real numbers?

Gregory Chaitin∗

Abstract

We discuss mathematical and physical arguments against continu-
ity and in favor of discreteness, with particular emphasis on the ideas
of Emile Borel (1871–1956).

1 Introduction

Experimental physicists know how difficult accurate measurements are. No
physical quantity has ever been measured with more than 15 or so digits of
accuracy. Mathematicians, however, freely fantasize with infinite-precision
real numbers. Nevertheless within pure math the notion of a real number is
extremely problematic.

We’ll compare and contrast two parallel historical episodes:

1. the diagonal and probabilistic proofs that reals are uncountable, and

2. the diagonal and probabilistic proofs that there are uncomputable reals.

Both case histories open chasms beneath the feet of mathematicians. In the
first case these are the famous Jules Richard paradox (1905), Emile Borel’s
know-it-all real (1927), and the fact that most reals are unnameable, which
was the subject of [Borel, 1952], his last book, published when Borel was 81
years old [James, 2002].

In the second case the frightening features are the unsolvability of the halt-
ing problem (Turing, 1936), the fact that most reals are uncomputable, and
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last but not least, the halting probability Ω, which is irreducibly complex (al-
gorithmically random), maximally unknowable, and dramatically illustrates
the limits of reason [Chaitin, 2005].

In addition to this mathematical soul-searching regarding real numbers,
some physicists are beginning to suspect that the physical universe is actually
discrete [Smolin, 2000] and perhaps even a giant computer [Fredkin, 2004,
Wolfram, 2002]. It will be interesting to see how far this so-called “digital
philosophy,” “digital physics” viewpoint can be taken.

Nota bene: To simplify matters, throughout this paper we restrict our-
selves to reals in the interval between 0 and 1. We can therefore identify a
real number with the infinite sequence of digits or bits after its decimal or
binary point.

2 Reactions to Cantor’s Theory of Sets: The

Trauma of the Paradoxes of Set Theory

Cantor’s theory of infinite sets, developed in the late 1800’s, was a decisive
advance for mathematics, but it provoked raging controversies and abounded
in paradox. One of the first books by the distinguished French mathematician
Emile Borel (1871–1956)1 was his Leçons sur la Théorie des Fonctions [Borel,
1950], originally published in 1898, and subtitled Principes de la théorie des

ensembles en vue des applications à la théorie des fonctions.

This was one of the first books promoting Cantor’s theory of sets (ensem-

bles), but Borel had serious reservations about certain aspects of Cantor’s
theory, which Borel kept adding to later editions of his book as new appen-
dices. The final version of Borel’s book, which was published by Gauthier-
Villars in 1950, has been kept in print by Gabay. That’s the one that I have,
and this book is a treasure trove of interesting mathematical, philosophical
and historical material.

One of Cantor’s crucial ideas is the distinction between the denumerable
or countable infinite sets, such as the positive integers or the rational num-
bers, and the much larger nondenumerable or uncountable infinite sets, such
as the real numbers or the points in the plane or in space. Borel had construc-
tivist leanings, and as we shall see he felt comfortable with denumerable sets,
but very uncomfortable with nondenumerable ones. And one of Cantor’s key

1For a biography of Borel, see [James, 2002].
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results that is discussed by Borel is Cantor’s proof that the set of reals is
nondenumerable, i.e., cannot be placed in a one-to-one correspondence with
the positive integers. I’ll prove this now in two different ways.

2.1 Cantor’s diagonal argument: Reals are uncount-
able/nondenumerable

Cantor’s proof of this is a reductio ad absurdum.

Suppose on the contrary that we have managed to list all the reals, with
a first real, a second real, etc. Let d(i, j) be the jth digit after the decimal
point of the ith real in the list. Consider the real r between 0 and 1 whose
kth digit is defined to be 4 if d(k, k) = 3, and 3 otherwise. In other words,
we form r by taking all the decimal digits on the diagonal of the list of all
reals, and then changing each of these diagonal digits.

The real r differs from the ith real in this presumably complete list of
all reals, because their ith digits are different. Therefore this list cannot be
complete, and the set of reals is uncountable. Q.E.D.

Nota bene: The most delicate point in this proof is to avoid having r end
in an infinity of 0’s or an infinity of 9’s, to make sure that having its kth
digit differ from the kth digit of the kth real in the list suffices to guarantee
that r is not equal to the kth real in the list. This is how we get around the
fact that some reals can have more than one decimal representation.

2.2 Alternate proof: Any countable/denumerable set
of reals has measure zero

Now here is a radically different proof that the reals are uncountable. This
proof, which I learned in [Courant & Robbins, 1947], was perhaps or at least
could have been originally discovered by Borel, because it uses the math-
ematical notion of measure, which was invented by Borel and later perfected
by his Ecole Normale Supérieure student Lebesgue, who now usually gets all
the credit.

Measure theory and probability theory are really one and the same—
it’s just different names for the same concepts. And Borel was interested in
both the technical mathematical aspects and in the many important practical
applications, which Borel discussed in many of his books.

So let’s suppose we are given a real ǫ > 0, which we shall later make
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arbitrarily small. Consider again that supposedly complete enumeration of
all the reals, a first one, a second one, etc. Cover each real with an interval,
and take the interval for covering the ith real in the list to be of length ǫ/2i.
The total length of all the covering intervals is therefore

ǫ

2
+

ǫ

4
+ · · ·

ǫ

2i
+ · · · = ǫ,

which we can make as small as we wish.
In other words, any countable set of reals has measure zero and is a so-

called null set, i.e., has zero probability and is an infinitesimal subset of the
set of all reals. Q.E.D.

We have now seen the two fundamentally different ways of showing that
the reals are infinitely more numerous than the positive integers, i.e., that the
set of all reals is a higher-order infinity than the set of all positive integers.

So far, so good! But now, let’s show what a minefield this is.

2.3 Richard’s paradox: Diagonalize over all nameable
reals −→ a nameable, unnameable real

The problem is that the set of reals is uncountable, but the set of all possible
texts in English or French is countable, and so is the set of all possible
mathematical definitions or the set of all possible mathematical questions,
since these also have to be formulated within a language, yielding at most
a denumerable infinity of possibilities. So there are too many reals, and not
enough texts.

The first person to notice this difficulty was Jules Richard in 1905, and the
manner in which he formulated the problem is now called Richard’s paradox.

Here is how it goes. Since all possible texts in French (Richard was
French) can be listed or enumerated, a first text, a second one, etc.,2 you
can diagonalize over all the reals that can be defined or named in French and
produce a real number that cannot be defined and is therefore unnameable.
However, we’ve just indicated how to define it or name it!

In other words, Richard’s paradoxical real differs from every real that
is definable in French, but nevertheless can itself be defined in French by
specifying in detail how to apply Cantor’s diagonal method to the list of all
possible mathematical definitions for individual real numbers in French!

2List all possible texts in size order, and within texts that are the same size, in alpha-
betical order.
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How very embarrassing! Here is a real number that is simultaneously
nameable yet at the same time it cannot be named using any text in French.

2.4 Borel’s know-it-all number

The idea of being able to list or enumerate all possible texts in a language
is an extremely powerful one, and it was exploited by Borel in 1927 [Tasić,
2001, Borel, 1950] in order to define a real number that can answer every
possible yes/no question!

You simply write this real in binary, and use the nth bit of its binary
expansion to answer the nth question in French.

Borel speaks about this real number ironically. He insinuates that it’s
illegitimate, unnatural, artificial, and that it’s an “unreal” real number, one
that there is no reason to believe in.

Richard’s paradox and Borel’s number are discussed in [Borel, 1950] on
the pages given in the list of references, but the next paradox was considered
so important by Borel that he devoted an entire book to it. In fact, this was
Borel’s last book [Borel, 1952] and it was published, as I said, when Borel
was 81 years old. I think that when Borel wrote this work he must have
been thinking about his legacy, since this was to be his final book-length
mathematical statement. The Chinese, I believe, place special value on an
artist’s final work, considering that in some sense it contains or captures that
artist’s soul.3 If so, [Borel, 1952] is Borel’s “soul work.”

Unfortunately I have not been able to obtain this crucial book. But based
on a number of remarks by other people and based on what I do know about
Borel’s methods and concerns, I am fairly confident that I know what [Borel,
1952] contains. Here it is:

2.5 Borel’s “inaccessible numbers:” Most reals are un-
nameable, with probability one

Borel’s often-expressed credo is that a real number is really real only if it
can be expressed, only if it can be uniquely defined, using a finite number
of words.4 It’s only real if it can be named or specified as an individual

3I certainly feel that way about Bach’s Die Kunst der Fuge and about Bergman’s Fanny
och Alexander.

4See for example [Borel, 1960].
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mathematical object. And in order to do this we must necessarily employ
some particular language, e.g., French. Whatever the choice of language,
there will only be a countable infinity of possible texts, since these can be
listed in size order, and among texts of the same size, in alphabetical order.

This has the devastating consequence that there are only a denumerable
infinitely of such “accessible” reals, and therefore, as we saw in Sec. 2.2, the
set of accessible reals has measure zero.

So, in Borel’s view, most reals, with probability one, are mathematical
fantasies, because there is no way to specify them uniquely. Most reals are
inaccessible to us, and will never, ever, be picked out as individuals using any
conceivable mathematical tool, because whatever these tools may be they
could always be explained in French, and therefore can only “individualize”
a countable infinity of reals, a set of reals of measure zero, an infinitesimal
subset of the set of all possible reals.

Pick a real at random, and the probability is zero that it’s accessible—
the probability is zero that it will ever be accessible to us as an individual
mathematical object.

3 History Repeats Itself: Computability The-

ory and Its Limitative Meta-Theorems

That was an exciting chapter in the history of ideas, wasn’t it! But history
moves on, and the collective attention of the human species shifts elsewhere,
like a person who is examining a huge painting.

What completely transformed the situation is the idea of the computer,
the computer as a mathematical concept, not a practical device, although
the current ubiquity of computers doesn’t hurt. It is, as usual, unfair to
single out an individual, but in my opinion the crucial event was the 1936
paper by Turing On computable numbers, and here Turing is in fact referring
to computable real numbers. You can find this paper at the beginning of the
collection [Copeland, 2004], and at the end of this book there happens to be
a much more understandable paper by Turing explaining just the key idea.5

History now repeats itself and recycles the ideas that were presented in
Sec. 2. This time the texts will be written in artificial formal languages, they

5It’s Turing’s 1954 Penguin Science News paper on Solvable and unsolvable problems,
which I copied out into a notebook by hand when I was a teenager.
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will be computer programs or proofs in a formal axiomatic math theory. They
won’t be texts that are written in a natural language like English or French.
And this time we won’t get paradoxes, instead we’ll get meta-theorems, we’ll
get limitative theorems, ones that show the limits of computation or the
limitations of formal math theories. So in their current reincarnation, which
we’ll now present, the ideas that we saw in Sec. 2 definitely become much
sharper and clearer.

Formal languages avoid the paradoxes by removing the ambiguities of
natural languages. The paradoxes are eliminated, but there is a price. Para-
doxical natural languages are evolving open systems. Artificial languages
are static closed systems subject to limitative meta-theorems. You avoid the
paradoxes, but you are left with a corpse!

The following tableau summarizes the transformation (paradigm shift):

• Natural languages −→ Formal languages.

• Something is true −→ Something is provable within a particular formal axiomatic
math theory.6

• Naming a real number −→ Computing a real number digit by digit.

• Number of words required to name something7 −→ Size in bits of the smallest
program for computing something (program-size complexity).8

• List of all possible texts in French −→ List of all possible programs, or
List of all possible texts in French −→ List of all possible proofs.9

• Paradoxes −→ Limitative meta-theorems.

Now let’s do Sec. 2 all over again. First we’ll examine two different
proofs that there are uncomputable reals: a diagonal argument proof, and
a measure-theoretic proof. Then we’ll show how the Richard paradox yields
the unsolvability of the halting problem. Finally we’ll discuss the halting
probability Ω, which plays roughly the same role here that Borel’s know-it-
all real did in Sec. 2.

6This part of the paradigm shift is particularly important in the story of how Gödel
converted the paradox of “this statement is false” into the proof of his famous 1931 in-
completeness theorem, which is based on “this statement is unprovable.” This changes
something that’s true if and only if it’s false, into something that’s true if and only if it’s
unprovable, thus transforming a paradox into a meta-theorem.

7See [Borel, 1960].
8See [Chaitin, 2005].
9The idea of systematically combining concepts in every possible way can be traced

through Leibniz back to Ramon Llull (13th century), and is ridiculed by Swift in Gulliver’s
Travels (Part III, Chapter 5, on the Academy of Lagado).
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3.1 Turing diagonalizes over all computable reals −→

uncomputable real

The set of all possible computer programs is countable, therefore the set of all
computable reals is countable, and diagonalizing over the computable reals
immediately yields an uncomputable real. Q.E.D.

Let’s do it again more carefully.
Make a list of all possible computer programs. Order the programs by

their size, and within those of the same size, order them alphabetically. The
easiest thing to do is to include all the possible character strings that can be
formed from the finite alphabet of the programming language, even though
most of these will be syntactically invalid programs.

Here’s how we define the uncomputable diagonal number 0 < r < 1.
Consider the kth program in our list. If it is syntactically invalid, or if the
kth program never outputs a kth digit, or if the kth digit output by the kth
program isn’t a 3, pick 3 as the kth digit of r. Otherwise, if the kth digit
output by the kth program is a 3, pick 4 as the kth digit of r.

This r cannot be computable, because its kth digit is different from the
kth digit of the real number that is computed by the kth program, if there
is one. Therefore there are uncomputable reals, real numbers that cannot be
calculated digit by digit by any computer program.

3.2 Alternate proof: Reals are uncomputable with prob-

ability one

In a nutshell, the set of computer programs is countable, therefore the set of
all computable reals is countable, and therefore, as in Sec. 2.2, of measure
zero. Q.E.D.

More slowly, consider the kth computer program again. If it is syntacti-
cally invalid or fails to compute a real number, let’s skip it. If it does compute
a real, cover that real with an interval of length ǫ/2k. Then the total length
of the covering is less than ǫ, which can be made arbitrarily small, and the
computable reals are a null set.

In other words, the probability of a real’s being computable is zero, and
the probability that it’s uncomputable is one.10

10Who should be credited for this measure-theoretic proof that there are uncomputable
reals? I have no idea. It seems to have always been part of my mental baggage.
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What if we allow arbitrary, highly nonconstructive means to specify par-
ticular reals, not just computer programs? The argument of Sec. 2.5 carries
over immediately within our new framework in which we consider formal
languages instead of natural languages. Most reals remain unnameable, with
probability one.11

3.3 Turing’s halting problem: No algorithm settles halt-

ing, no formal axiomatic math theory settles halt-
ing

Richard’s paradox names an unnameable real. More precisely, it diagonalizes
over all reals uniquely specified by French texts to produce a French text
specifying an unspecifiable real. What becomes of this in our new context in
which we name reals by computing them?

Let’s go back to Turing’s use of the diagonal argument in Sec. 3.1. In Sec.
3.1 we constructed an uncomputable real r. It must be uncomputable, by
construction. Nevertheless, as was the case in the Richard paradox, it would
seem that we gave a procedure for calculating Turing’s diagonal real r digit
by digit. How can this procedure fail? What could possibly go wrong?

The answer is this: The only noncomputable step has got to be determin-
ing if the kth computer program will ever output a kth digit. If we could do
that, then we could certainly compute the uncomputable real r of Sec. 3.1.

In other words, Sec. 3.1 actually proves that there can be no algorithm
for deciding if the kth computer program will ever output a kth digit.

And this is a special case of what’s called Turing’s halting problem. In
this particular case, the question is whether or not the wait for a kth digit
will ever terminate. In the general case, the question is whether or not a
computer program will ever halt.

The algorithmic unsolvability of Turing’s halting problem is an extremely
fundamental meta-theorem. It’s a much stronger result than Gödel’s famous
1931 incompleteness theorem. Why? Because in Turing’s original 1936 paper
he immediately points out how to derive incompleteness from the halting
problem.

A formal axiomatic math theory (FAMT) consists of a finite set of axioms
and of a finite set of rules of inference for deducing the consequences of those

11This theorem is featured in [Chaitin, 2005] at the end of the chapter entitled The
Labyrinth of the Continuum.
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axioms. Viewed from a great distance, all that counts is that there is an
algorithm for enumerating (or generating) all the possible theorems, all the
possible consequences of the axioms, one by one, by systematically applying
the rules of inference in every possible way. This is in fact what’s called a
breadth-first (rather than a depth-first) tree walk, the tree being the tree of
all possible deductions.12

So, argued Turing in 1936, if there were a FAMT that always enabled you
to decide whether or not a program eventually halts, there would in fact be
an algorithm for doing so. You’d just run through all possible proofs until
you find a proof that the program halts or you find a proof that it never
halts.

So uncomputability is much more fundamental than incompleteness. In-
completeness is an immediate corollary of uncomputability. But uncom-
putability is not a corollary of incompleteness. The concept of incomplete-
ness does not contain the concept of uncomputability.

Now let’s get an even more disturbing limitative meta-theorem. We’ll do
that by considering the halting probability Ω [Chaitin, 2005], which is what
corresponds to Borel’s know-it-all real (Sec. 2.4) in the current context.13

3.4 Irreducible complexity, perfect randomness, max-
imal unknowability: The halting probability Ω

Where does the halting probability come from? Well, our motivation is
the contrast between Sec. 3.1 and Sec. 3.2. Sec. 3.1 is to Sec. 3.2 as the
halting problem is to the halting probability! In other words, the fact that
we found an easier way to show the existence of uncomputable reals using a
probabilistic argument, suggests looking at the probability that a program
chosen at random will ever halt instead of considering individual programs
as in Turing’s 1936 paper.

Formally, the halting probability Ω is defined as follows:

0 < Ω ≡
∑

program p halts

2−(the size in bits of p) < 1.

To avoid having this sum diverge to infinity instead of converging to a number
between zero and one, it is important that the programs p should be self-

12This is another way to achieve the effect of running through all possible texts.
13[Tasić, 2001] was the first person to make the connection between Borel’s real and Ω.

I became aware of Borel’s real through Tasić.
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delimiting (no extension of a valid program is a valid program; see [Chaitin,
2005]).

What’s interesting about Ω is that it behaves like a compressed version
of Borel’s know-it-all real. Knowing the first n bits of Borel’s real enables us
to answer the first n yes/no questions in French. Knowing the first n bits of
Ω enables us to answer the halting problem for all programs p up to n bits
in size. I.e., n bits of Ω tells us whether or not each p up to n bits in size
ever halts. (Can you see how?) That’s a lot of information!

In fact, Ω compactly encodes so much information that you essentially
need an n-bit FAMT in order to be able to determine n bits of Ω! In other
words, Ω is irreducible mathematical information, it’s a place where
reasoning is completely impotent. The bits of Ω are mathematical facts that
can be proved, but essentially only by adding them one by one as new axioms!
I’m talking about how difficult it is to prove theorems such as

“the 5th bit of Ω is a 0”

and
“the 9th bit of Ω is a 1”

or whatever the case may be.
To prove that Ω is computationally and therefore logically irreducible,

requires a theory of program-size complexity that I call algorithmic infor-
mation theory (AIT) [Chaitin, 2005]. The key idea in AIT is to measure
the complexity of something via the size in bits of the smallest program for
calculating it. This is a more refined version of Borel’s idea [Borel, 1960] of
defining the complexity of a real number to be the number of words required
to name it.

And the key fact that is proved in AIT about Ω is that

H(Ωn) ≥ n − c.

I.e.,
(the string Ωn consisting of the first n bits of Ω)

has program-size complexity or “algorithmic entropy H” greater than or
equal to n− c. Here c is a constant, and I’m talking about the size in bits of
self-delimiting programs.

In other words, any self-delimiting program for computing the first n bits
of Ω will have to be at least n − c bits long.
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The irreducible sequence of bits of Ω is a place where mathematical truth
has absolutely no pattern or structure that we will ever be able to detect. It’s
a place where mathematical truth has maximum possible entropy—a place
where, in a sense, God plays dice.14

Why should we believe in real numbers, if most of them are uncom-
putable? Why should we believe in real numbers, if most of them, it turns
out,15 are maximally unknowable like Ω?16

4 Digital Philosophy and Digital Physics

So much for mathematics! Now let’s turn to physics.
Discreteness entered modern science through chemistry, when it was dis-

covered that matter is built up out of atoms and molecules. Recall that the
first experimental evidence for this was Gay-Lussac’s discovery of the simple
integer ratios between the volumes of gaseous substances that are combined
in chemical reactions. This was the first evidence, two centuries ago, that
discreteness plays an important role in the physical world.

At first it might seem that quantum mechanics (QM), which began with
Einstein’s photon as the explanation for the photoelectric effect in 1905,
goes further in the direction of discreteness. But the wave-particle duality
discovered by de Broglie in 1925 is at the heart of QM, which means that
this theory is profoundly ambiguous regarding the question of discreteness
vs. continuity. QM can have its cake and eat it too, because discreteness is
modeled via standing waves (eigenfunctions) in a continuous medium.

The latest strong hints in the direction of discreteness come from quantum
gravity [Smolin, 2000], in particular from the Bekenstein bound and the
so-called “holographic principle.” According to these ideas the amount of
information in any physical system is bounded, i.e., is a finite number of 0/1
bits.

14On the other hand, if Gödel is correct in thinking that mathematical intuition can at
times directly perceive the Platonic world of mathematical ideas, then the bits of Ω may
in fact be accessible.

15See the chapter entitled The Labyrinth of the Continuum in [Chaitin, 2005].
16In spite of the fact that most individual real numbers will forever escape us, the notion

of an arbitrary real has beautiful mathematical properties and is a concept that helps us
to organize and understand the real world. Individual concepts in a theory do not need
to have concrete meaning on their own; it is enough if the theory as a whole can be
compared with the results of experiments.
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But it is not just fundamental physics that is pushing us in this direction.
Other hints come from our pervasive digital technology, from molecular biol-
ogy where DNA is the digital software for life, and from a priori philosophical
prejudices going back to the ancient Greeks.

According to Pythagoras everything is number, and God is a mathemati-
cian. This point of view has worked pretty well throughout the development
of modern science. However now a neo-Pythagorian doctrine is emerging,
according to which everything is 0/1 bits, and the world is built entirely
out of digital information. In other words, now everything is software, God
is a computer programmer, not a mathematician, and the world is a giant
information-processing system, a giant computer [Fredkin, 2004, Wolfram,
2002, Chaitin, 2005].

Indeed, the most important thing in understanding a complex system is
to understand how it processes information. This viewpoint regards phys-
ical systems as information processors, as performing computations. This
approach also sheds new light on microscopic quantum systems, as is demon-
strated in the highly developed field of quantum information and quantum
computation. An extreme version of this doctrine would attempt to build
the world entirely out of discrete digital information, out of 0 and 1 bits.17

Whether or not this ambitious new research program can eventually suc-
ceed, it will be interesting to see how far it gets. The problem of the infinite
divisibility of space and time has been with us for more than two millennia,
since Zeno of Elea and his famous paradoxes, and it is also discussed by
Maimonides in his Guide for the Perplexed (12th century).

Modern versions of this ancient problem are, for example, the infinite
amount of energy contained in the electric field surrounding a point electron
according to Maxwell’s theory of electromagnetism, and the breakdown of
space-time because of the formation of black holes due to extreme quantum
fluctuations (arbitrarily high energy virtual pairs) in the vacuum quantum
field.

I do not expect that the tension between the continuous and the discrete
will be resolved any time soon. Nevertheless, one must try. And, as we
have seen in our two case studies, before being swept away, each generation
contributes something to the ongoing discussion.

17This idea, like so many others, can be traced back to Leibniz. He thought it was
important enough to have it cast in the form of a medallion.
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