Math 162A Lecture notes on Curves and Surfaces, Part I
by Chuu-Lian Terng, Winter quarter 2005

Department of Mathematics, University of California at Irvine

1.

1.1.
1.2
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.
1.9.

CONTENTS

Curves in R™

Parametrized curves

arclength parameter

Curvature of a plane curve

Some elementary facts about inner product
Moving frames along a plane curve
Orthogonal matrices and rigid motions
Fundamental Theorem of plane curves
Parallel curves

Space Curves and Frenet frame

1.10. The Initial Value Problem for an ODE

1.11.
1.12.

2.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
3.

3.1
3.2.
3.3.
3.4.

3.5.
3.6.
3.7.
3.8.

The Local Existence and Uniqueness Theorem of ODE
Fundamental Theorem of space curves

Fundamental forms of parametrized surfaces

Parametrized surfaces in R?

Tangent and normal vectors

Quadratic forms

Linear operators

The first fundamental Form

The shape operator and the second fundamental form
Eigenvalues and eigenvectors

Principal, Gaussian, and mean curvatures

Fundamental Theorem of Surfaces in R?

Frobenius Theorem

Line of curvature coordinates

The Gauss-Codazzi equation in line of curvature coordinates

Fundamental Theorem of surfaces in line of curvature
coordinates

Gauss Theorem in line of curvature cooridnates

Gauss-Codazzi equation in local coordinates

The Gauss Theorem

Gauss-Codazzi equation in orthogonal coordinates

N U N NN

12
12
14
15
16
18
18
19
20
21
23
26
28
30
32
32
38
40

43
44
45
49
51



1. CURVES IN R"”

1.1. Parametrized curves.

A map a:[a,b] = R", a(t) = (z1(t),...,za(t)), is smooth if all derivatives of z;
exist and are continuous for all 1 < j < n. We use o (t) to denote the derivative:

do dry dx,
/ _ &t (e Gbn
oz(t)—dt (dt’”"dt>'

A parametrized curve in R™ is a smooth map « : [a,b] — R™ such that o/(t) # 0
for all t € [a,b], and o/(t), is called its tangent vector at the point a(t).

Example 1.1.1. Straight line
The straight line in R? through (1,2) and (2, —3) can be parametrized by a(t) =
(1,2) + (1, —5) = (1 +¢,2 — 5¢).

Example 1.1.2. Circle

The circle C of radius 2 centered at (1, —1) is given by the equation (x—1)%+(y+
1)2 = 22, To find a parametric equation for this circle we may take x — 1 = 2cost
and y + 1 = 2sint, so x = 1+ 2cost, y = —1 + 2sint. Define a : [0,27] — R? by

a(t) = (x(t),y(t)) = (1 +2cost,—1 + 2sint).

Since o/(t) = (—2sint,2cost) is never a zero vector for any 0 < t < 27, a is a
parametrization of the circle C.

Example 1.1.3. Ellipse

2
To find a parametrization of the ellipse F given by % +% =1, we can set § = cost
and % = sint. Then x = 2cost and y = 3sint. It is easy to check that

a(t) = (2cost,3sint)

is a parametrization of F

Example 1.1.4. The graph of a function
If f:]a,b] — R is a smooth function, then a(z) = (z, f(x)) is a parametrization
of the graph of f, {(z, f(z)) | = € [a, b]}.

1.2. arclength parameter.

To define the arclength of a parametrized curve « : [a, b] — R™, we first subdivide
the interval [a, b] into N subintervals [t;, t;11] of length ¢ = b*T“, 1=0,1,...,N—1,
by taking t; = a + i6. We now get a polygonal approximation to the curve «,
namely the polygon with the N + 1 vertices a(t;) and N edges [a(t;), a(t;+1)]. The
length of the i-th edge is clearly ||a(t;+1 — «(t;)]], so that intuitively, their sum,
Z;V;Ol [la(tis1) — a(t;)|| should approximate the length of the curve a. But of
course, when N gets large (and hence ¢ gets small) a(t;41) — a(t;) is approximately
a/(t;)d, so the length of the polygon is approximated by Z;‘Vﬂ [la’(t;)]|6, which
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we recognize as a Riemann sum for the integral L = f; [|o/(t)]| dt corresponding
to the partition ¢g,...,txy of the interval [a,b], and so we define this integral L
to be the arclength of the curve a from ¢ = a to t = b . (We can give a physical
interpretation of the arclength. If a(t) represents the position at time ¢ of a particle
moving in R3, then o/(¢) is its instantaneous velocity at time ¢, so that ||o/(¢)]| is
the instantaneous speed at time ¢, and the integral of ||a’(¢)|| should represent the
distance travelled by the particle, i.e., the arclength.)
Now let us define the arclength function s from [a, b] to [0, L] by

)= [l du

i.e., the arclength of a restricted to the interval [a, ¢]. By the Fundamental Theorem
of Calculus, % = la/(t)]|. Since v is a parametrized curve, by definition [[a/(¢)|| > 0
for all ¢ € [a,b]. But a smooth function from [a, b] to [0, L] with positive derivative
at every point must be strictly increasing. In other words, s : [a,b] — [0, L] is one
to one and onto, so it has an inverse function ¢ = ¢(s), and moreover, from calculus
we know that 2 = 1/(4)

If a(t) has unit speed, ie., |[[&/(¢)|| = 1 for all ¢ € [a,b], then the arclength

function for « is
t t
:/ Ho/(u)Hdu:/ ldu=t-a.

In other words, the parameter ¢ and the arclength differ by a constant, and we call
such parameter an arclength parameter, and we give a formal definition next.

Definition 1.2.1. A parametrized curve « : [¢g, ¢;] — R™ is said to have arclength
parameter if o'(t) is a unit vector for all ¢ < t < ¢, ie., ||&/(t)]] = 1 for all
te [CQ, Cﬂ.

Suppose « : [a,b] — R™ is a parametrized curve, s : [a,b] — [0, L] the ar-
clength function, and t = ¢(s) the inverse function of s. Then 3(s) = a(t(s)) is a
parametrized curve with arclength parameter. Note that 3 and a give the same
curve in R™ but with different parametrizations. So we have shown that we can
always change parameter to make a curve parametrized by its arclength.

Example 1.2.2. Straight line
For Example 1.1.1, &/(t) = (1,—5). So s(t fo [l (z)]] dz = fo V1+25dx =
V26 t, and the inverse function is t(s) = —2 Hence

@

S t ot
E):(1+E72_Et)

gives the same straight line, but now is parametrized by arclength.

B(s) = a(t(s)) = af

Example 1.2.3. Circle
For Example 1.1. 2 a:]0,2n] — R2, o/(t) = (—2sint,2cost), and ||/ (t)]|* = 4.

So ||a (t)|| =2 and s(t fo ||/ (z)|| do = fo 2dx = 2t. Hence the inverse function
t=35,and

B(s) = a(t(s)) :a(;) (1+2cos > > 1+251n2)

gives the same circle but with arclength parameter.



Example 1.2.4. Ellipse
For Example 1.1.3, o/(t) = (=2sint,3cost) and [|a/(t)|| = V/4cos?t + 9sin?t.

Although we can not give an explicit formula for s(t) = fg V4dcos?t + 9sin? t dt,
the inverse function t = t(s) exists and 3(s) = a(¢(s)) is parametrized by arclength.

1.3. Curvature of a plane curve.

Informally speaking, the curvature of a plane curve is the rate at which its
direction is changing. We next turn this intuitive idea into a formal definition.
Assume that a : [cp,c1] — R? is a parametrized curve with arclength parameter,
ie., [[&/(s)]] =1 for all ¢y < s < ¢;. Since &/(s) is a unit vector, we can write

a/(s) = (cos6(s),sinb(s)),

where 6(s) is the angle (measured counter-clockwise) between the positive z-axis
and the tangent vector o/(s). Thus we can think of 6(s) as the direction of the
curve « at the point «a(s)

The curvature of « is defined to be the instantaneous rate of change of 6 with
respect to the arclength, i.e.,
, do
k(s)=0'(s) = I

Exercise 1.3.1.

(1) Prove that the curvature of a straight line is identically zero.
(2) Prove that the curvature of a circle of radius 7 is the constant function 1.

If a(t) = (x(t),y(t)) is a parametrized curve and s(¢) its arclength function, then
since ‘fl—‘;‘ is in the same direction as o/(t), the curvature can be also viewed as the
instantaneous rate of change of the angle (t) between %2 and (1, 0) with respect to
the arclength parameter. Since o/(t) = (2/(t),y'(t)), the angle 0(t) = tan_l(y,(t)).

z'(t)
Now the Chain rule implies that
o dgdr YR gy

Z T w2
ds dtds 1+(%)2 ds
Y — x'"y 1 B Yz — 2y

$/2 + y12 Oé/(t)2 <$/2 + y/Q)% ’
which is the curvature at a(t), i.e., we have proved
Proposition 1.3.1. If a(t) = (z(t),y(t)) is a parametrized curve, then its curva-

ture function is
y”x’ _ x”y’

($/2 + y/2)
For example, the curvature of «(t) = (¢, f(¢)) (the graph of f) is

k(t) — L)d
(L+ f(1)%)2

3 -
2



1.4. Some elementary facts about inner product.

The dot product of two vectors X = (z1,...,2,) and Y = (y1,...,y,) in R is
X Y =2y 4+ T
It can be checked easily that for any real numbers c1,co and X, Y, Z € R™ the dot
product has the following properties:
(1) (ClX —|—CQY) -/ = ClX . Z—FCgY . Z7
(2) Z - (ClX +CQY) = 01Z - X +CQZ . Y,
3) X Y=Y X
(4) X-X >0 for all X € R™ and “=" holds if and only if X = 0.
The first two conditions mean that - is a bilinear map from R™ x R™ to R, the third
condition means that - is symmetric, and the fourth condition says that - is what
is called positive definite.
More generally, we define an inner product on a real vector space V to be a
positive definite, symmetric bilinear map (,): V x V = R, i.e.,
(1) (erv14cave,v) = c1(v1,v)+ca(ve, v) for all real numbers ¢, ¢co and vy, va, v €
v,
(2) (v1,v2) = (ve,v1) for all v1,vy €V,
(3) (v,v) >0forall v eV and (v,v) =0 if and only if v = 0.
An inner product space is a vector space V together with a particular choice ( , )
of an inner product on V.

Example 1.4.1.

(1) The dot product is an inner product on R™.
(2) If V is a linear subspace of R™, then (vi,v2) = vy - vy defines an inner
product on V.

Exercise 1.4.1.
Let R™ denote the space of n x 1 vectors, and A = (a;;) a symmetric n X n
matrices. For X,Y in R™ define
(X,Y) = X'AY.

(Note that Xt is 1xmn, Aisnxn,and Y isnx1,s0 X*AY is a 1 x 1 matrix, which
can be identified as a real number). Prove that ( ,) is symmetric and bilinear.

Let (,) be an inner product on V. The length (or the norm) of v € V is

o]l = v/ (v, 0),

and the angle 6 between vy, vy € V satisfies
(v1,v2)
o1 [[|va]]
In particular, if v, - v2 = 0, then the angle between v; and ve is 7/2, i.e., v1 L va.
Note that if V' = R? or R? and the inner product is the dot product, then the above

formulas are the usual length and angle formula.
Let V be a vector space. We review some definitions:

cosf =

(1) v1,...,v are linearly independent if cyv1 + -+ + cxvr, = 0 for some real
numbers cq, ..., c, implies that all ¢;’s must be equal to zero.



(2) v1,...,v spans V if every element of V' is a linear combination of vy, ..., vg.
(3) {v1,...,vr} is a basis of V if they are linearly independent and span V.
(4) If (,) is an inner product on V, then a basis {v1,...,vx} is orthonormal if

(vi,vj) = 0;5, where

5oL ifl<i=j<k,
Yo, if1<i#j <k

In other words, all v;’s have unit length and are mutually perpendicular.

If {v1,...,v,} is a basis of R", then given any v we can solve a system of linear
equations to find real numbers ¢y, ..., ¢, such that v = c;v; +- - -+ ¢,v,. But when
{v1,...,v,} is an orthonormal basis, then we can use the inner product to get these
¢;’s without solving a system of linear equations. In fact, we have

Proposition 1.4.2. Suppose ( ,) is an inner product on a vector space V, and
{vi,...,vn} an orthonormal basis for V. If v = > | c;v;, then ¢; = (v;,v) for
1<i<n.

Proof. Take the inner product of v and v; to see that
(v,v;) = (c1v1 + -+ + CuU, V;)
=c1(v1,vi) + ... F (v, v) + .o+ en(Vn,v) = 6.
O
Proposition 1.4.3. Suppose e; : [a,b] — R™ are smooth maps for 1 <i < n such

that {e1(t),...,en(t)} is an orthonormal basis of R™ for all t € [a,b]. Then

(1) ej(t) = 201 ajilt)e;(t), where aji(t) = ej(t) - e;(t).
(2) a;;(t) = —a;i(t).

Proof. Since {e1(t),...,e,(t)} is a basis of R™, €;(t) is a linear combination of
e1(t), ... en(t), say

er(t) = ayi(t)er(t) + - -+ ani(t)en(t).

The above Proposition implies that aj;(t) = €(t) - e;(t), which proves (1). Since
(€i,e;j) = 0;; is a constant, the product rule of differentiation implies that e} - e; +
ei-e;:0. By (1),aji:e;-ej:—e;-ei:—aij. ]

Let A = (a;;) be an n x m matrix. The transpose of A denoted by A’ isam xn
matrix, whose i-th column is the An n x n matrix A = (a;;) is anti-symmetric if

At = —A, ie., a;; = —aj;. Soif A= (a;;) is skew-symmetric, then a;; = 0 for all
1 <i<nand a;; = —ajy;.
Next we relate linear combinations of vectors in R™ and matrix product. Let A
by
be an n X n matrix, v; the i-th column of Afor 1 <i<mn,andb=| - | annx1

bn



matrix. Then Ab is an n x 1 matrix, and

by
AbZ(Ul,...ﬂJn) : :b1U1+"'+bnvn'
bn
Conversely, if w € R” is equal to civ; + ... + ¢,v,, then Ac = w, where ¢ =
(c1,...,¢cp)t If B = (bi;) is an n x n matrix and wu; the i-th column of B for

1 <i < n, then the i-th column of AB is Au;, or
AB = A(uy, ..., up) = (Auy,. .., Auy).

We will use these simple formulas over and over again in the study of curves and
surfaces in R3.

From now on, we will view R™ as the space of all n x 1 matrices, i.e., as column
vectors. Suppose e; : [a,b] — R™ are smooth maps such that {ei(t),...,e,(¢)} is
an orthonormal basis for each t € [a,b]. Let A(t) = (a;;(t)), where a;; = €] - e;.
Then Proposition 1.1.4 implies that

(1.4.1) (E4(0), - (1) = (e1(8) ., en®)AGD),
where A(t) = (a;;(t)) is skew-symmetric for each ¢ € [a, b].

1.5. Moving frames along a plane curve.

y(s) y'(s)
is the unit tangent vector. Note that (ab) 1 (Z), which can be either checked

/
If a(s) = (x(s)) is parametrized by arc length, then e;(s) = o/(s) = (a: (S))

. . . =b\ .
by computing the dot product or geometrically seeing that 0 ) the vector

_a/
obtained by rotating <Z> by 90 degree counterclockwise. So ex(s) = ( xy(g(;) > is
perpendicular to ej(s) and also has length 1 (e3(s) is a normal vector to the curve
at a(s)). In other words, {e;(s),e2(s)} is an orthonormal basis of R? for each s,

which is called an orthonormal moving frame along the plane curve a. Let 6(s)

) to &/(s). Then

o= (56) = (el
== (e ) =¥ (any ) =002 = e
(€1, €5) = (e1,e2)A

with A skew-symmetric. Note that the diagonal entries of a skew-symmetric matrix

are zero. But e¢] = key implies that the 21-th entry of A is k, so A = (0 _k>.

denote the angle from <(1)

SO

By ],

kE 0



]]lls SIlOWS that
(E ’52) (51’52) k I
k O

e] = keo,

eh = —key.
Note also that o/ = e;. So ey, es, a satisfies the following system of ordinary
differential equations (ODE):

or equivalently,

e] = kea,
el = —key,
o =ej.

1.6. Orthogonal matrices and rigid motions.

In this section, we view R™ as the space of real n x 1 matrices, i.e., view X € R”
as column vectors.

An n x n matrix A is orthogonal if A'A = 1,,, the n x n identity matrix. Let
v; denote the i-th column of the n x n matrix A, i.e., A = (v1,...,v,). Then by
definition of matrix multiplication we see that A*A = I if and only if v4,...,v, are
orthonormal because

v

AA = (V1,05 0p) = (Viv;) =1

K2

implies that viv; = §;;.

Exercise 1.6.1. 2 x 2 rotation matrix

Let R? denote the space of 2x 1 matrices, and p a constant angle. Let f : R? — R?
be the map defined by f(v) = rotate v by p. We use polar coordinates to write
down the map: Suppose v = (z,y)! has radius r and angle 0, so * = rcosf and
y =rsinf. Since f(v) is obtained by rotating v by angle p, the radius of f(v) is r
and the angle is 6 + p. If we write f(v) = (p, ), then

p =rcos(f + p) = r(cosfcosp —sinfsin p) = x cos p — ysin p,
g = rsin(f + p) = r(sinf cos p + cos @ sin p) = x cos p + ysin p.

p\ _ [cosp —sinp)\ [z
qg) \sinp cosp y)

In other words, f(v) = R,v, where

R — [€osp —sinp
P \sinp cosp )’

R, is called a rotation matriz. Note that det(R,) = 1 and R, is orthogonal.

This shows that



Exercise 1.6.2. 2 x 2 reflection matrix

Let g : R? — R? be the linear map defined by g(v) = the reflection of v in the
line y = tan(p/2)z. Prove that

(1) If v = (z,y)! has polar coordinate (r,8), then g(v) = (p,q)* has polar
coordinate (r,p — 6).
(2) Prove that

(2) =50 () wheres, = (Gnr v ).
q y sinp —cosp
S, is called a reflection matrix (reflection in the line y = tan(p/2)x). Note

that S, is orthogonal and det(Sy) = —1.

Next we will show that any 2 x 2 orthogonal matrix is either a rotation matrix
or a reflection matrix.

Proposition 1.6.1. If A is a 2 x 2 orthogonal matriz, then A is either a rotation
matriz or a reflection matriz.

Proof. If A= (lcl Z) is orthogonal, then A*A = I, implies that

a’?+c? =1,
b2 +d% =1,
ab+cd = 0.

So we may assume a = cos p, b = sin p for some p. But the third equation implies
that

- = 3 = cot p,
so d = —bcot p. But
1=b%+d* =b*+ cot? 0 b* = (1 + cot? p)b* = b* csc? p,

hence b? = sin? p. So either b = sinp and d = — cosp or b = —sinp and d = cos p.
In other words, we have shown that a 2 x 2 orthogonal matrix must be either is a
rotation matrix R, or a reflection matrix S,,. [

Note that the dot product of X, Y € R™ can be written as X - Y = XY

Proposition 1.6.2. Let X, Y € R", and A a n x n matriz. Then
(1) (AX) Y =X - (AY),
(2) A is orthogonal if and only if (AX) - (AY)=X Y.

Proof. (1) is true because (AX) Y = (AX)'Y = XTA'Y = X{(A'Y) = X - A'Y.
But (AX) - (AY) = (AX)!(AY) = X'A'AY is equal to XY if and only if
At A =1, this proves (2). O

Since the dot product on R™ gives the length and angle, A is orthogonal if and
only if A preserves length and cosine of the angle.

Definition 1.6.3. A map f : R" — R" is called a rigid motion if there exists
an orthogonal matrix A with det(A) = 1 and a constant vector b € R™ such that
f(X)=AX +bforall X € R™.
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The reason we require that det(4) = 1 in the definition of rigid motions is
because we want rigid motions preserve the orientation of R”.

Given a constant angle p and a constant vector b € R?, the map f(X) = R, X+0b
is a rigid motion of R? and all rigid motions of R? are of this form, i.e., a rigid motion
is a rotation plus a translation.

Proposition 1.6.4. Let a : [a,b] — R? be a curve parametrized by its arc length,
[+ R?* — R? a rigid motion defined by f(X) = R,X +b, and 8 : [a,b] — R? the
curve defined by B(s) = f(a(s)). Then o and B have the same curvature functions.

Proof. Since ((s) = f(a(s)) = Rya(s) + b, f'(s) = R,a'(s). But R, is orthogonal,
so ||6'(s)|]] = |[|Rpd’(s)]| = ||a/(s)|| = 1. This shows that 3 is parametrized by its
arc length. Let e1(s) = &/(s) and ey(s) = rotate e;(s) by m/2 counterclockwise,
and €;(s) = ('(s) and éx(s) = rotate €;(s) by m/2 counterclockwise. Because R, is
a rotation and R,(e1) = €1, R,(ea(s)) = €2(s). The curvature function k and k of
a and (3 are given by

respectively. But
€& = (Rpel)/ (Rpe2) = (Rpell) (Rye2),
which is equal to €] - ex because R, is orthogonal. So we have proved k = k. d

Exercise 1.6.3.

(1) Prove that if A, B are orthogonal matrices, then AB is also an orthogonal
matrix.

(2) Prove that if A is an orthogonal matrix, then A~! is orthogonal.

(3) Suppose A, B are 3 x 3 orthogonal matrices with det(4) = det(B) = 1,
b, c constant 3 x 1 vectors, and f,g are maps from R? to R3 defined by
f(X)=AX +band g(X) = Bx +c, ie., f and g are rigid motions of R?.
Prove that the composition f o g is also a rigid motion.

(4) Suppose A is a 3 x 3 orthogonal matrix, b a 3 x 1 vector, and f(X) = AX +b
is a rigid motion of R3. Find the formula for the inverse function of f and
show that it is also a rigid motion.

(The above two exercise says that the set of all rigid motions of R? is a
group under composition).

1.7. Fundamental Theorem of plane curves.

First we recall some results from calculus:

Theorem 1.7.1. Fundamental Theorem of Calculus
Suppose h : [a,b] — R is continuous, and f : [a,b] — R is the function defined
by f(z) = f;; h(t) dt. Then f is differentiable and ' = h.

Theorem 1.7.2. Given a continuous function h : [a,b] — R and ¢¢ € [a,b], if
y : [a,b] — R satisfies y' = h and y(co) = yo, then

y(s) = yo + /S h(t) dt.

co
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Proof. From calculus, we know that y(s) = C + f; h(t) dt for some constant C.
Buty(co):yO:C'Jrfc?h(t)dt:C+0:C,soC:y0. O

Lemma 1.7.3. Given two unit vectors vy, v in R? and po, qo € R2, there exists a
unique rigid motion f, i.e., f(X) = R,X +b, such that

f(PO) = {o, Rp'Ul = V2.

Proof. Since vy, vy are unit vectors in R?, there is a unique angle 0 < p < 27
such that v = R,v;. To get b, we need to solve f(pg) = Rppo +b = qo, so
b=qo— Rppo- U

Theorem 1.7.4. Fundamental Theorem of plane curves

(1) Given a smooth function k : [a,b] — R, pg = (z0,70)" € R?, vy € R?
a unit vector, and cy € [a,b], then there exists a unique o : [a,b] — R?
parametrized by its arc length such that a(cg) = po, &'(co) = vo, and its
curvature function is k.

(2) If a, B : [a,b] — R? are parametrized by arc length and have the same
curvature functions, then there is a unique rigid motion f of R? such that

f=foa.

Proof. Since vy is a unit vector, there is a constant angle 6y such that vy =
(cos By, sinfp)t. Set

0(s) = 6 —s—/sk(t)dt,

Co

xz(s) =z + /S cosO(t) dt,

co

y(s) =yo + / sin6(t) dt,

Co
a(s) = (2(s), y(s))".
By the fundamental theorem of calculus, 6'(s) = k(s), 2’(s) = cos0(s), and y/(s) =
sinf(s). But o/(s) = (2/(s),y'(s)) = (cos(s),sinf(s))!, so a is parametrized by
arc length and the curvature for « is 8’ = k. This proves that k is the curvature
function for the curve «, and (1) is proved.

The proof of (1) also implies that if v : [a,b] — R? is a curve parametrized by
arc length, v(co) = po and 7' (cy) = vg, then v must be the one constructed in (1).
Or equivalently, suppose two curves oy, az : [a,b] — R? parametrized by arc length
have the same curvature function, a;(cy) = as(cp), and af(co) = ah(co). Then
a1 = (9.

By Lemma 1.7.3, there is a unique rigid motion f(X) = R,X + b such that
f(aleo)) = Blco) and Ry’ (cp) = B'(co). Let 7 : [a,b] — R? be defined by v(s) =
f(a(s)). By Proposition 1.6.4, « and v have the same curvature function. But
7(0) = f(a(0)) = B(0) and +'(0) = R,a'(0) = B'(0), so B and v have the same
curvature function, pass through the same point with same unit tangent when
s=c¢p. So f=7,ie., = foa. g

Exercise 1.7.1. Use the method given in Theorem 1.7.4 to find the curve whose
curvature is 2, passes through (0,1)! whose tangent at (1,0)! is (1/2,+/3/2).
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1.8. Parallel curves.

Let a : [a,b] — R? be a curve parametrized by arc length, and {e1(s),ea(s)}
the o.n. moving frame along « (here e;(s) = o/(s) is the unit tangent and ey(s) =
Rzeq(s) the unit normal). Given a constant 7 > 0, the curve parallel to o having
distance r to « is

B(s) = a(s) + 1 ea(s).
Note that
B'(s) = o/ (s) + 1 e5(s) = ex(s) —r k(s)er(s) = (1 = r k(s))er(s),
so if k(s) # 1/r for all s € [a,b] then B is a parametrized curve. Such a § is
also called a wave front of «, and when k(sg) = 1/r then the curve fails to be a

parametrized curve at so (recall that § is a parametrized curve if 5'(s) # (0,0) for
all s € [a,b]), and we say that § has a singular point at s = sq.

Definition 1.8.1. Suppose « : [a,b] — R? is a curve parametrized by arc length,
and k(sg) # 0. The osculating circle at a(sg) is the circle centered at «(sg) +
ﬁeg(so) with radius ﬁ

By definition, the osculating circle passes through a(sg) and has the same tangent
line as the curve « at a(sp). Let e1,es denote the o. n. moving frame along a.
Let (8 denote the arc-length parametrization of the osculating circle of « at «a(sp)
such that 8(sg) = a(so) and 5'(sg) = &’(sg). The curvature of 3 (a circle of radius
1/k(so)) is the constant function k(s¢), which is equal to the curvature of a at
a(sp). Let 6(s) and 7(s) denote the polar angle of o’ and 3’ respectively, i.e.,

a’(s) = (cos(s),sinf(s)), ['(s) = (cosT(s),sinT(s)).
Then 6" and 7’ are the curvature functions for a and [ respectively. But o/(sg) =
B'(s0) implies that 6(sg) = 7(sp), and the curvature of o and § at s = sp equal

implies that 6’(sg) = 7/(sp). Compute the second derivatives of o and 8 at s = s¢
by the chain rule to get

o (s9) = 0'(s0)(—sinf(sq), —cosO(sg)), B"(s0) = 7' (s0)(—sin7(sg),cos7(sp)).
But we have shown that 0(sg) = 7(so) and 6'(sg) = 7'(s0), so &”(so) = 8" (s0).
Thus we have proved that

a(so) = B(s0), @/ (so) = B'(s0), a”(s0) = B"(s0)-

By Taylor’s Theorem, «a(s) and ((s) agree up to second order near sg, or the
osculating circle is the best circle approximation of the curve « at «(sp).

1.9. Space Curves and Frenet frame.

Let a : [a,b] — R3 be an immersed curve parametrized by arc length. So
e1(s) = &/(s) is a unit tangent vector. First we construct a natural o. n. moving
frame along «, then the coefficients of their derivatives as linear combinations of
the frame should give us the local invariants for space curves as we did for plane
curves. While there is a natural choice of the unit normal vector for plane curves,
there are infinitely many unit vectors normal to a space curve. So we need to make
a choice of the second vector field of the frame. But since e; - e; =1,

! / ! !
O0=(e1-e1) =ej-e1+e1 e =2e]-e;.
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Thus €] - e; = 0. If €](s) = &”(s) is never zero, then the direction of €/ (s) is a
unit vector perpendicular to ej(s). Set k(s) = ||e}(s)]], e2(s) = €1(s)/]|e1(s)|], and
e3(s) = e1(s) x ea(s). Then {ej, ez, e3} is an 0. n. moving frame along «. By
definition of e3 and k we have e} = key. Write e} = Z?zl ajie; for 1 <5 <3, ie,
€] = ayel +azes + azes,
ey = aige + azzer + azzes,
e3 = aizer + azsez + aszes.

Since €| = kes, a;1 = 0, az1 = k, and az; = 0. By Proposition 1.4.3, A = (a;;)

is skew-symmetric, i.e., aj; = —a;5. So a;; = 0 for all 1 < i < 3, a;2 = —k, and
a13 = 0. Therefore the matrix A must be of the form

0 -k O

kK 0 -—7

0 7 0

for some function 7. In fact, 7 = €} - e3. So we have proved

Proposition 1.9.1. Let o : [a,b] — R® be parametrized by arc length. If o' (s)
is never zero, then set e1(s) = o/(s), k(s) = [|a"(s)|], ea(s) = &'(s)/||a” ()],
es = ey X e, and T = €5 - eg. Then

0 -k 0
(€, e5,e5) = (e1,ea,e3) [k 0 —71,
0 7 0
or equivalently,
e] = kea,
(191) 6/2 = —k61 + TE3,
el = —Tes.

Equation (1.9.1) is called the Frenet equation, k is called the curvature, 7 is the
torsion of a.

If k=0, then €} = o” = kes =0, so &/(s) = ug, and a(s) = ugs + u; for some
constant vector ug.u1 in R?, i.e., « is a straight line. In general, the curvature k
measures the deviation of « from being a straight line.

If 7 =0, then ¢ = —Tes = 0. So e3 = v = (a,b,c)" is a constant vector.
But (a-vg) = o -vg = e1 - e3 = 0 because eq,es,e3 are orthonormal. Hence
- vy = ¢p a constant, which shows that a(s) = (z(s), y(s), 2(s)) lies in the plane
ax + by + cz = ¢y. In other words, if 7 = 0, then « is a plane curve. In genreal, the
torsion measures the deviation of a being a plane curve.

Example 1.9.2. helix

Let a,b be positive constants such that a® + b?> = 1, a(s) = (acos s, asin s, bs).
Then o'(s) = (—asins,acos s,b) has length va? + b2 = 1, i.e., a is parametrized
by arc length. Note that « lies on the cyclinder z? + y2 = a? and is a helix.
But €j(s) = o''(s) = (—acoss,—asins,0) implies that & = ||a”(s)||] = a and
es = (—cos s, —sin s, 0). So e3(s) = e1(s) X ea(s) = (bsins,—bcos s, a), {e1,ea,e3}
is the Frenet frame for «, and the torsion 7 = e}, - e3 = b.
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Proposition 1.9.3. Suppose o is a curve in R parametrized by arc length such
that o/ is never zero, and f(X) = AX +b is a rigid motion of R®. Then 3 := foa
has the same curvature and torsion. Moreover, if (e1,ea,e3) is the Frenet frame
along a, then (Aey, Aes, Aeg) is the Frenet frame along (.

Proof. Since ((s) = Aa(s) + b, §'(s) = Ad/(s) = Aei(s). A is orthogonal implies
that ||Aeq|| = ||le1]| = 1. But €] = keg and

(Aey) = Ae| = A(kes) = kAes.

By definition of rigid motion, A is orthogonal and det A = 1, so A(e; X e3)
(Aey) x (Aez). Hence (Aeq, Aesg, Aes) is the Frenet frame for 5. But (Aes) =
Aely = A(—Teq) = —7Aea, so the torsion for § is also equal to 7. O

1.10. The Initial Value Problem for an ODE.

Suppose we know the wind velocity at every point of space and at every instant
of time. A puff of smoke drifts by, and at a certain moment we observe the precise
location of a particular smoke particle. Can we then predict where that particle
will be at all future times? By making this metaphorical question precise we will be
led to the concept of an initial value problem for an ordinary differential equation.

We will interpret “space” to mean R", and an “instant of time” will be repre-
sented by a real number ¢. Thus, knowing the wind velocity at every point of space
and at all instants of time means that we have a function F' : R x R" — R" that
associates to each (¢,z) in R x R™ a vector F(t,z) in R™ representing the wind ve-
locity at = at time ¢. Such a mapping is called a time-dependent vector field on R™.
We will always be working with such F' that are at least continuous, and usually F
will even be continuously differentiable. In case F(t,z) does not actually depend
on t then we call F' a time-independent vector field on R™, or simply a vector field
on R”. Note that this is the same as giving a map F': R" — R”.

How should we model the path taken by the smoke particle? An ideal smoke particle
is characterized by the fact that it “goes with the flow”, i.e., it is carried along by
the wind, meaning that if 2:(¢) is its location at a time ¢, then its velocity at time ¢
will be the wind velocity at that point and time, namely F'(¢, z(t)). But the velocity
of the particle at time t is 2/(t) = %, so the path of a smoke particle will be a
differentiable curve x : (a,b) — R™ such that 2/(¢t) = F(¢,2z(t)) for all ¢ € (a,b).
Such a curve is called a solution curve of the time-dependent vector field F' and we

also say that “x satisfies the ordinary differential equation ‘fi—f = F(t,x)”.
Usually we will be interested in solution curves of a differential equation fl—f =

F(t,z) that satisfy a particular initial condition. This means that we have singled
out some special time ¢y (often, ¢y, = 0), and some specific point vg € R”, and
we look for a solution of the ODE that satisfies x(tg) = vo. (In our smoke parti-
cle metaphor, this corresponds to observing the particle at vy as our clock reads
to.) The pair of equations %¢ = F(t,z) and z(tg) = vp is called an “initial value
problem” (abbreviated as IVP) for the ODE 92 = F(t,z). The reason that it is so
important is that the so-called Existence and Uniqueness Theorem for ODE says
(more or less) that, under reasonable assumptions on X, the initial value problem

has a “unique” solution.
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Remark 1.10.1. If the vector field F' is time-independent, then the ODE ‘fi—‘f =
F(x) is often called autonomous.

Remark 1.10.2. Let F : R x R" — R", and F(t,z) = (f1(t,z),..., fo(t,2)) so
that written out in full, the ODE 4 = F(t, z) looks like

% = filt,x1(t),...,za(t), i=1,...n.

In this form it is usually referred to as a “system of ordinary differential equations”.

Example 1.10.3. F a constant vector field, i.e., F'(¢,z) = u, where u is some fixed
element of R™. The solution with initial condition x(ty) = vy is clearly the straight
line z(t) := vo + (t — to)u.

Example 1.10.4. F is the “identity” vector field, F(¢,z) = x. The solution with
initial condition z(to) = v is clearly z(t) := e(*~t)yy. (Later we will see how to
generalize this to an arbitrary linear vector field, i.e., one of the form F(t,v) = Av
where A is a constant n X n matrix.)

Example 1.10.5. A vector field that is “space-independent”, i.e., F(t,z) = ¢(t)
where ¢ : R — R™ is continuous. The solution with initial condition x(ty) = wvg is

z(t) = v + fti o(s)ds.

1.11. The Local Existence and Uniqueness Theorem of ODE.

In what follows, we formulate the discussion in the last section in precise math-
ematical terms.
Let B,(po) denote the ball in R™ with radius r centered at py, i.e.,

B(po) ={p €R" [ |lp — pol| <r}.

A subset U of R™ is open if for each p € U there exists some 7 > 0 (r depend on
the point p) such that B,(p) C U.

A map f from an open subset U of R™ to R™ is C* if % is continuous for all
1< < n.
Theorem 1.11.1. The Local Existence and Uniqueness Theorem of ODE

Let U C R™ be an open subset, F : (a,b) x U — R" is C1. Fiz cy € (a,b). Then
given any po € U, there exists € > 0 and a unique solution « : (co — €,¢o +€) = U
of the following initial value problem:

(1.11.1) {ift" = F(t,a(t)),

a(co) = po-

Remark 1.11.2. If F is only continuous, the above theorem may not hold. For
example, let F : (—=1,1) x (=1,1) — R be the map defined by F(t,y) = y'/3.
Consider the initial value problem:

d
W=y,
y(0) = 0.

First note that the constant function y = 0 is a solution. But this is a separable
ODE y~1/3dy = dt. Integrate both sides to get %yQ/?’ = t 4+ c¢. But the initial
condition y(0) = 0 implies that ¢ = 0. So y = (2t/3)?/2. This shows that
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(1) we have two solutions defined on [0, 1) for the initial value problem,
(2) the second solution is not defined on an open interval containing ¢t = 0.

Next we give an application of the uniqueness of solutions of ODE. Let M3y3
denote the space of all 3 x 3 matrices. Then we can identify M3y3 as (R?)3 = R?.

Proposition 1.11.3. Suppose A : [a,b] — Msxs is smooth and A(t) is skew-
symmetric for all t € [a,b], co € (a,b), and C is a 3 x 3 orthogonal matriz. If
g : [a,b] = Msxs a smooth solution to the following initial value problem

9 = g(t)A(t),
9(00) =C.

Then g(t) is orthogonal for all t € [a,b].

Proof. Set y(t) = g(t)Tg(t), where g(t)T is the transpose of g(t). By the product
rule, we have y(cp) = CTC =1 and

Y =" 9+9"9 =) g+9"9gA=(gA) g+g"gA
=ATgTg+g"gA = ATy +yA

But the constant function z(¢) = I also satisfies the above equation because z’ = 0
and ATz + 24 = AT + A = 0. So by the existence and uniqueness of solutions of
ODE y = z. Hence y(t) = g(t)Tg(t) =1, and g(t) is orthogonal. O

1.12. Fundamental Theorem of space curves.

Proposition 1.12.1. Let po,qo € R?, and {uy,us,u3} and {vy,vs,v3} 0.n. bases
of R3 such that det(u1,uz,u3) = 1 and det(vi,ve,v3) = 1. Then there exists a
unique rigid motion f(x) = Ax + b such that f(po) = qo and Au; = v; for all
1 <i <3, where A is an orthogonal 3 x 3 matriz with det(A) = 1 and b € R3.

Proof. Let U = (u1,uz2,u3) and V = (v1,v9,v3) be the 3 x 3 matrices with u; and
v; as the i-th column respectively for ¢ = 1,2, 3. Since {u,us2,us} and {v1,ve,v3}
are o.n., U and V are orthogonal matrices. We want to find A such that Au; = v;
for 1 <i<3 ie, AU=V. So A=VU"!' =VUT. We need b € R? such that
qo = Apo + b. Therefore b should be equal to gy — App. O

Theorem 1.12.2. (Fundamental Theorem of curves in R?)

(1) Given smooth functions k,7 : (a,b) — R so that k(t) > 0, to € (a,b),
po € R and (u1,us2,u3) a fized o.n. basis of R, then there exists § > 0
and a unique curve o : (tg—8,to+6) — R3 parametrized by arc length such
that a(0) = po, and (u1,usz,ug) is the Frenet frame of « at t = ty.

(2) Suppose a, a : (a,b) — R3 are curves parametrized by arc length, and o, &
have the same curvature function k and torsion function 7. Then there
exists a rigid motion [ so that & = f(a).

Proof. First note that F : (a,b) x R3 x R3 x R3 — R3 x R3 x R3 defined by
F(t,eq,ea,e3) = (k(t)ea, —k(t)er + 7(t)es, —7(¢t)es)
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is C*. So by the Existence and Uniqueness of solutions of ODE (Theorem 1.11.1),
there exists § > 0 and a unique solution
g:(to—0,tg+6) = R3 x R® x R?

of the initial value problem

{g/@) = g(t)A(t),
=

g(to) = (u1,u2, u3)
where
0 —k(t) 0
Al = [k®) 0 —r)
0 7(t) 0

Since the initial value g(tg) = (uy,us,us3) is orthogonal and A is smooth and is
skew-symmetric, by Proposition 1.11.3 g(¢) must be orthogonal for all ¢t € (tg —
d,tp 4+ 0). Let e;(t) denote the i-th column of g(t). Then {e;(t),e2(t),e3(t)} is an
o.n. basis of R3 for all t € (tg — 6,0 + §). Set

a(t) = po —|—/t e1(s) ds.

Then o’ (t) = e1(t) has length 1, so « is a curve in R? parametrized by arc length.
Write g(t) = (e1(t), ea(t), es(t)). Then ¢’ = gA can be written as

el = kea,

[

ey = —kej + Tes,
r_

€3 = —Te€q,

(e1,e2,e3)(to) = (u1,uz, us)

This imply that k and 7 are the torsion and curvature for « and {ej, es,e3} is its
Frenet frame, which proves (1).

Fix ty € (a,b). Let {e1,e2,e3} be the Frenet frame of «, and {é1,€é2, €5} the
Frenet frame of &. By Proposition 1.12.1, there is a unique rigid motion f(z) =
Az + b of R3 such that f(a(to)) = a(to) and A(e;(to)) = €;(to) for 1 <i < 3. Set
B = foa. By Proposition 1.9.3, the curvature and torsion for 5 are also k, 7, and the
Frenet frame of 3 is { Aey, Aes, Aes}. But both (&, €y, €2, €3) and (5, Aeq, Aes, Aeg)
satisfy the following differential equation:

(z,y1, 2, y3) = (Y1, kya, —ky1 + Tys, —Ty2)

and have the same initial condition at tg, i.e., 8(tg) = f(a(to)) = a(to), Aei(to) =
é1(to), Aea(to) = éa(to), and Aes(to) = €3(to). So the uniqueness of solutions of
ODE implies that 8(t) = a(t) for all ¢t € (a,b). But 8= f o, so & = f o «, which
proves (2). O

Exercise 1.12.1.

(1) Let a,b be positive constant real numbers. We call «(t) = (acost, asint, bt)
the helix defined by a, b.
(a) Reparametrized the curve by arc length.
(b) Find the Frenet frame, curvature, and torsion of the curve.
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(¢) Given positive constants ¢y, ¢ prove that there exist a, b such that the
helix defined by a, b has curvature ¢; and torsion cs.

(d) Assume f3 is a curve in R? whose curvature and torsion are positive
constants. Prove that § must be a piece of a helix. (hint: use (¢) and
the Fundamental Theorem of space curves)

(2) Given a space curve «, the normal plane at «(sg) is the plane through «(sp)
and perpendicular to the tangent o/(sg). Prove that if all the normal planes
of o pass through a fixed point pg, then « lies in a sphere centered at pyg.
(Hint: Take the derivative of the function f(s) = (a(s) —po) - (a(s) — po).)

(3) Let a,b be constants such that a? + b*> = 1. Suppose the binormal of a
curve « is e3(s) = (acos(s?),asin(s?),b) and the torsion of « is positive.
Find the curvature and torsion of «. (hint: use the Frenet equation)

2. Fundamental forms of parametrized surfaces

2.1. Parametrized surfaces in R3.

Let v; = (a1,a2,a3)” and vo = (by,b2,b3)T in R3. Then vy,vy are linearly
independent if c1v1 + covs = 0 for some constants ci, ¢y implies that ¢; = ¢o = 0.
It is easy to see that vy, vy € R3 are linearly independent if and only if the cross
product v; X vg # 0.

Definition 2.1.1. Let O be an open subset of R?. A smooth map f : O —
R, f(u,v) = (f1(u,v), fa(u,v), f3(u,v)), is an immersion if 3L (u,v), 3 (u, v) are
linearly independent for all (u,v) in O. An immersion f: O — R3 will be called a

parametrized surface in R3.

Example 2.1.2. The graph of a smooth function 2: O — R
Let f: O — R? be defined by f(u,v) = (u,v, h(u,v))T. Then

T T
g — 1’0’% , % — 0’1,@ .
ou ou ov ov
Set h, = % and h, = %. Then

ik
?xg—le 0 hu|=(=hy,—hy, )T
A (1N

v

is never zero for all (u,v) € 0. So f is an immersion.

Example 2.1.3. Surface of revolution

Let h: R — R be a smooth function, and C' the curve in the yz-plane given by
z = h(y), and M the surface obtained by rotating the curve C along the y-axis.
Then M can be parametrized by

f(y,0) = (h(y) cos0,y, h(y)sinf)”.
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A direct computation implies that

fy'ig:

= By
and

_of _

(W' (y) cos 6, 1,1 (y)sin ), fo := 75 = (=h(y) sin 0,0, h(y) cos 6),

fy % fo = (hcos@, —hh' hsin0)T = h(cosd, —h',sin )T,
so [ fails to be an immersion exactly at (y, ) when h(y) = 0. However, if h(y) > 0
for all y € R, then f is an immersion.

2.2. Tangent and normal vectors.

Let f : O — R3 be a parametrized surface, and (ug,v9) € O. Suppose c :
(—e,€) = O, c(t) = (u(t),v(t)), is smooth and ¢(0) = (ug, vg). We call (f o)’ (0) a
tangent vector of f at f(ug,vo). By the chain rule

d d of du Of dv
dt t:Of(u(t),v(t)) = tzoafu(u(t),v(t))% + %(u(ﬁ),v(t))E

= fu(uo,vo)u'(0) + fu(uo, vo)v'(0).

In particular, if ¢(t) = (ug + ¢,v9), then (f o ¢)'(0) = fu(ug,vo), and if c(t) =
(ug,vo +t) then (f o¢)’(0) = fi(ug,vo). These computations imply that the space
of all tangent vectors of f at f(uo,vo) is a 2-dimensional linear subspace of R and
{fuluo,v0), fu(uo,vo)} is a basis. We call the space T'f, of all tangent vectors of f
at p = (ug,vo) the tangent plane of f at p.
Since v1 X vg is perpendicular to both vy, vs,
N (uo, vo) = fu(uo,v0) X fo(uo,vo)

Hfu(u07 UO) X fv(uOvUO)H
is a unit vector perpendicular to the tangent plane of f at (ug,vo), i.e., N(ug,vo)
is a unit normal to f at (ug,vo).

Given a parametrized surface f : @ — R3, we have constructed a moving basis
(frame) on the parametrized surface: f,, f,, N. If we imitate what we did for
curves in R3, then we should take the derivative of the moving frame and write
them as linear combinations of f,, f,, N. We expect the coefficients of these linear
combinations will give us the geometric invariants for the surface. Write

(fuafvaN)u = (fuuafvuaNu) = (fuvaaN)Pa
(fuva;N)v = (fuvafvvaN'u) = (fuvaaN)Q
for some P,Q : O — Mjys, i.e.,

fuuw = fub11 + fop21 + Npar,
fvu - fuplQ + fvp22 + NP327

Since fuy = fou, the second column of P is equal to the first column of @, so the
entries of P,Q have 18 — 3 = 15 functions. However, we will see later that entries
of P, can be expressed in terms of two “fundamental forms” (depending on six
functions) and they must satisfy a system of partial differential equations, which
are the so called Gauss-Codazzi equations. The fundamental theorem of surfaces in
R3 states that the two fundamental forms satisfying the Gauss-Codazzi equations
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determine the surfaces in R? unique up to rigid motions. In order to explain the two
fundamental forms, we need to review some more linear algebra of bilinear forms
and linear operators.

2.3. Quadratic forms.
Recall that a bilinear form on a vector space V is amap b: V x V — R such
that
b(civ1 + cava,v) = c1b(v1,v) + cab(va, v),
b(v, c1v1 + cave) = ¢1b(v,v1) + cob(v, va)

for all v,v1,v2 € V and ¢1, ¢o € R. A bilinear form b is symmetric if b(v,w) = b(w, v)
for all v,w € V.

Definition 2.3.1. A real-valued function ) on a vector space V' is called a quadratic
form if it can be written in the form Q(v) = b(v,v) for some symmetric bilinear
form b on V. (We say that @ is the quadratic form associated to b).

If b is a symmetric bilinear form, then
(v + w, v+ w) = b(v,v) + b(v,w) + b{w,v) + b(w, w) = b(v,v) + 2b(v, W) + b(w, w),

50 Qv+ w) = Q(v) + 2b(v,w) + Q(w). In other words, we can recover b from the
corresponding quadratic form @ as

bo,w) = 3(Qv +w) — Q(v) — Q).

Example 2.3.2. Let A be an n X n matrix, R™ the space of all n x 1 real matrices,
and b(X,Y) = XTAY (here we identify 1 x 1 matrices as real numbers). Then b is
a bilinear form. If X = (z1,...,2,)7, Y = (y1,...,yn)T, and A = (a;;), then

ail a2 0 Qip hn
b(X,Y)=XTAY = (21,...,2,) | @0 92 7 %
An1 e Ann Yn
Y1
n n n
= (Z 51T, Z aj2Lj, ..., Z ajnxj)
j=1 j=1 j=1
Yn
n n n
i=1j=1 ij=1
Let v1,...,v, be a basis of V, and b a bilinear form on V. Set b;; = b(v;, v;) for

1 <1i,j <n. The matrix B = (b;;) is called the coefficient matriz of b with respect
to {vi,...,vn}. v =>" zv;, and w =1 y;v;, then b(v,w) = ZZ’j:l bijxiy;.
If b is symmetric, then b;; = b;; and the corresponding quadratic form @ is Q(v) =
i bijiz;.

Exercise 2.3.1.
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(1) Let f: R? — R? be the map defined by
f(z,t) = (e cost,e* sint, z)T.

Sketch the surface and prove that f is an immersion. (i.e., show tht
Of/0z,0f /0t are linearly independent at every point).

(2) Let f: R? — R? be the map defined by f(z,0) = (2 cos®, zsin6, z). Sketch
the surface and prove that f is not an immersion when z = 0.

(3) Let afs) = (y(s),2(s)) be a smooth curve parametrized by arc length in
the yz-plane, and f(s,8) = (z(s)cos8,y(s), z(s)sinf). Find all the points
when f fails to be an immersion.

(4) Let « : (a,b) — R? be a curve parametrized by arc length with positive
curvature function, e1(s) = o/(s), and f: (a,b) x R — R3 the map defined
by f(s,t) = a(s) + tei(s). Prove that f is an immersion except at (s,0).

2.4. Linear operators.

Let V be a vector space, {v1,...,v,} abasisof V, and T : V — V a linear map.
Then for each 1 < i < n we can write T'(v;) as a linear combination of vy, ..., vy,

T(’Uj) = Z A5 V;.
i=1

We call A = (ai;) the matriz associated to the linear map T with respect to the
basis {v1,...,v,}. Note that if we write v = >"" | z;u; and T'(v) = >, y;v;, then
Y = AX, where X = (21,...,2,)7 and Y = (by,...,b,)T. This is because

T('U) =T <Z xﬂ)z‘) - ZSL'ZT(%) = Z TV = Z <Z ajia;i> vj,
i=1 i=1

ij=1 j=1 \i=1
n .
SO Y =D i g Qi e, Y =AX.

If we change basis, the corresponding matrix of 7' change by a conjugation:

Proposition 2.4.1. LetT : V — V be a linear map, and A and B the matrices of T
associated to bases {v1, -+, vp} and {u1, -+ ,un} of V respectively. Ifu; =3, cjiv;
for 1 <i<mn, then B=C71AC, where C = (c;j).

Proof.
T(ui) =Y bpitt = > bri Y ConkUm = Y _ ( bkicmk> Um
k=1 k=1 =1 m 1

=1 \k=

n

n n n
T E Cji’l)j = E CjiT(Uj): E Cji E amjvm
=1 j=1 =1

j=1 =

3

n

E Cjimj | Um-
J=1

m=1
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But {vi,...,v,} is a basis of V, so T(u;) can be written uniquely as a linear
combination of vy, ...,v,. Hence

n n
E briCmi = E Cjilmy s
k=1 j=1

which means that the mi-th entry of CB is equal to the mi-th entry of AC. So
CB = AC, which implies that B = C~1AC. O

Suppose A = (a;;) and B = (b;;) are the matrices associated to the linear maps
S:V —=Vand T:V — V with respect to basis {v1,...,v,} respectively. In other
words,

S(vj) = Zaijviv T(v;) = Zbijvi7 1<j<n.
i=1 i=1
Let SoT : V — V denote the composition of S and T, i.e.,

(SoT)(v) = S(T(v)).

Proposition 2.4.2. If A = (a;;) and B = (b;;) are the matrices associated to
linear maps S:V =V and T : V — V with respect to the basis {v1,...,v,}, then

the matriz associated to S o T with respect to {v1,...,v,} is AB.
Proof. Suppose C = (c;;) is the matrix associated to SoT with respect to v1,. .., Up,
ie.,

S(T(v)) = Z Clej Vk-
k=1

But
S(T(vy)) = S(Z bijvi) = Z bij S(vi)
i=1 i=1
= by > apvp =Y ( akibij> Uk,
i=1 k=1 k=1 \i=1
80 Cpj = Y iy akibij = (AB)k;. This proves C' = AB. O

Definition 2.4.3. Let ( ,) be an inner product on V. A linear operator T : V — V
is self-adjoint if (Tv,w) = (v, Tw) for all v,w € V.

Proposition 2.4.4. Let T : V — V be a linear map, and A = (a;;) the matriz as-
sociated to T with respect to an orthonormal basis vy, ..., v,. Then a;; = (T'(vj),v;)
for 1 <i,j <n. Moreover, if T is self-adjoint, then A is symmetric.

Proof. Suppose T'(v;) = > | a;;v;. Since (v;,v;) = §;5, (T'(vj),v;) = aij.
If T is self-adjoint, then a;; = (T'(vj),vi) = (v, T(vs)) = ajs. O

Suppose {v1,...,v,} is a basis of V but not an orthonormal, then although
((T'(v;),v;)) is not the matrix associated to T' with respect to this basis, we still
can compute the matrix in terms of (T'(v;),v;) and (v;,v;) as follows:

Proposition 2.4.5. Let (V,( ,)) be an inner product space, vi,...,v, a basis of
V,T:V =V a self-adjoint operator, A = (a;;) the matrices of T with respect
to v1,...,vn, and bjj = (T(v;),v;). Let gi;j = (vi,v;), G = (gij), G~ = (¢g") the
inverse of G, and B = (b;j). Then
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(1) B=A'G,
(2) A=G'B' =GB,
(3) det(A) = 8, tr(A) = Xy ai = 3, bijg.

Proof. Compute directly to get

bij = (T(v:),v;) = O arive,v;) = > anigry = (A'G)yj,
k k

i.e., the ij-th entry of B is equal to the ij-th entry of A*G, which implies (1). Then
A' = BG~!. But B and G are symmetric matrices, so A = (G71)!B! = G71B,
which proves (2). Recall that det(A; As) = det(A;) det(Az) and det(G~1) = ﬁ(c)'

Thus det(A) = izzggg O

Let (,) be an inner product on V, and S : V — V a self-adjoint linear operator.
Define v° : V x V — R by
b°(v,w) = (S(v), w).

It is easy to check that

(i) b° is a symmetric bilinear form on V,

(ii) the coefficient matrix of b° is (s;;), where s;; = (S(v;),v;).
The bilinear form b will be called the bilinear associated to S.
Proposition 2.4.6. Suppose ( ,) is an inner product on V, and b a symmetric

bilinear form on V. Then there exists a unique self-adjoint operator S : V — V
such that b = b°.

Proof. Let {v1,...,v,} be an orthonormal basis of V, and b;; = b(v;,v;). Define
S :V — V be the linear map such that S(v;) = >27_, bj;v;. It is easy to check
that b = b°. O

Exercise 2.4.1.

(1) Suppose the coefficient matrix of the bilinear form b on R? with respect to

. (1 2\ . 1 -1 . 1
basis <1> , <3) is (_1 9 > Find b(v,v) for v = (O)

(2) Let V be the linear subspace of R? defined by z +y + 2z = 0, and b(v, w) =
v - w, the dot product of v and w. Prove that
1 0
(a) | =1],| 1 | form a basis of V,
0 —1
(b) Find the coefficient matrix of b with respect to this basis.

2.5. The first fundamental Form.

Definition 2.5.1. Suppose f : @ — R? is a parametrized surface in R3. A qua-
dratic form @ on f, is a function p — @), that assigns to each p in O a quadratic
form @, on the tangent plane T'f, of f at p.
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Remark 2.5.2. Making use of the bases f,,(p), fv(p) in the T'f,, a quadratic form Q
on f is described by the symmetric 2x 2 matrix of real-valued functions Q;; : O — R
defined by

Qij(p) = Q(fz, (p); fz,; (),

(where 1 = u and z2 = v). We call the @Q;; the coefficients of the quadratic
form @, and we say that Q is of class C* if its three coefficients are C*. These
three functions @11, @12 = @21, and Q22 on O determine the quadratic form @
on f uniquely: if w € Tfp, then we can write w = £f,(p) + nfy, and Qp(w) =
Q11(p) € +2Qu12(p) €0+ Qa2(p) n*.

Note that we can choose any three functions ();; and use the above formula
for Q,(w) to define a unique quadratic form @ on f with these Q;; as coefficients.
This means that we can identify quadratic forms on a surface with ordered
triples of real-valued functions on its domain.

Notation. Because of the preceding remark, it is convenient to have a simple
way of referring to the quadratic form @ on a surface having the three coefficients
A, B,C. There is a classical and standard notation for this, namely:

Q = A(u,v) du® + 2B(u,v) dudv + C(u,v) dv?.

To see the reason for this notation—and better understand its meaning—consider
a curve in O given parametrically by ¢ — (u(t),v(t)), and the corresponding image
curve a(t) i= f(u(t), v(t)) on f. Then '(t) = fu(u(t), v(t))u(t)+ fo(ult), v(t))' ()

and

Qo (1) = Alu(t), v(t)) (u'(t))* + B(u(t), v(t)) (u' ()" (t)) + C(u(t), v() (v'(1))*.

The point is that curves on f are nearly always given in the form ¢ — f(u(t),v(t)),
so a knowledge of the coefficients A, B, C as functions ot u,v is just what is needed
in order to compute the values of the form on tangent vectors to such a curve from
the parametric functions u(¢) and v(¢). As a first application we shall now develop
a formula for the length of the curve a.

Definition of the First Fundamental Form of a Surface f

Since the tangent plane T'f, is a linear subspace of R3 it becomes an inner-
product space by using the restriction of the inner product on R3. Let I, : T M, x
TM, — R denote this inner product, i.e.,

L(&n) =¢&n

for all £, € T f,,, which is the First Fundamental Form on f. The coefficient matrix
for T with respect to the basis { fu, f»} is (gi;), where

g11 = fu ' fuv
g12 = 921 = fu " fo,
922 = fv . fv-

Thus:
I=g11(u,v) du® + 2g12(u, v) du dv + gao(u,v) dv?.
If & and & are tangent vectors of f at py = (ug,vp), then we can write & =
a1 fu(po) + a2 fu(po) and & = by fu(po) + bz fu(po) for some constants ay,az, b1, bo.
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So

&1+ & = (a1 fulpo) + azfu(po)) - (b1 fu(po) + b2 fo(po))

= g11(po)aibr + gi2(po)(aibe + azbr) + gaa(po)azbs.
In other words, we can compute the inner product of two vectors of the tangent
plane T'fp,, (hence the length of a vector and the angle between two vectors in T'f},)
from g;;(po)’s.
The Arc Length of a Curve on a Surface

Let t — (u(t),v(t)) be a parametric curve in O with domain [a, b]. The length,

L, of the curve a : t — f(u(t),v(t)) is:

b
L= [ [l/®)||dt

= [ Vou(u(®), o) (£)? +2g12(u(t), v(t))w ()0’ (8) + gzz(u(t), v(t))v'(t)?) dt.

a

The Angle between two curves
Let ¢1(t) = (x1(t), 22(t)) and co(t) = (y1(t), y2(t)) be two smooth curves in O
such that ¢1(0) = ¢2(0) = po = (ug,vo). The angle 0 between oy = f o ¢y and
ag = f ocy is defined to be the angle between o} (0) and «5(0). So
@1(0) - a5(0)
[l (0)[[le (0)]]
> =1 915 (p0)7(0)y;(0)

¢ (52,0 95 (r0)2 ©)250)) (2, ()l O)50))

cosf =

The Area

First recall that the area of the parallelgram spanned by v1,vs in R? is equal to
the base times the height, so it is [|v1]|||v2]| sin @, where 6 is the angle between vy

and vo. But cos = —4¥2— implies that
[loa[[]vz2]]
vy 2
. 1°02
[oa|*[[oa|[? sin® 6 = [[or][[Jvz][*(1 = cos® 0) = [[or] *[oa][* | 1 = 77
[[oa][[vz]]
_ 2 2 o2 |V Ur U2 2
= [[va][*[|v2]|* = (v1 - v2)” = vy Uy g~ U = [[v1 x vaf|*.

Next sketch the idea of how to compute the area of the surface f over a rectan-
gular region D = [aq, b1] X [ag, ba] inside O: we subdivide D into small rectangular
pieces and use the parallelgram spanned by f,Au and f,/Av to approximate the
area of each small piece, and then add them up to get an approximation of the area
of f(D). When the sides of the small pieces tend to zero, the limit of the sum is

the surface area of f(D):
a bz
/ / \/ 911922 — 9%2 dudv.
al b1

Alternative Notations for the First Fundamental Form.
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The First Fundamental Form of a surface is so important that there are several
other standard notational conventions for referring to it. One whose origin should
be obvious is to denote to it by ds?, and call ds = v/ds2 the “line element” of the
surface.

2.6. The shape operator and the second fundamental form.

Suppose f : O — R? is a parametrized surface, and N : O — R3 is the unit
normal vector field defined by

N — fa?l X fmz .
1 fzr X fasl
Since N - N = 1, the product rule implies that

0
81‘@‘
so both N, and N,, are tangent to f.

0=—(N-N)=N,,-N+N-N,, =2N,,-N,

Definition 2.6.1. The shape operator S, at p € O for the parametrized surface
f: O — R3 is the linear map from T'f, to T'f, such that S(f,(p)) = —Nu,(p) for
i=1,2.

Given any tangent vector £ of f at f(p), we write £ as a linear combination of
f-”ﬂl (p), f.rg (p)v 5 = le.m (p) + CQfTQ (p)7 then Sp(g) = 761N961 (p) - CQNIQ (p)

Proposition 2.6.2. The shape operator S, is self-adjoint.
Proof. By definition, Sp(fz,) - fos = —Ngy - fo,- But N - fi, = 0 implies that

(N : fﬂcg)xl =0= le : f$2 +N- f$2$17
SO0 —Ng, - fz, = N - fo,z,. Similarly, —Ng, - fo; = N - fz,4,. Because f is smooth,

fwlxg = fzgzl- So
_Nwl . fwg = _Na;g 'fwl =N- f$1$27
which implies that

Sp(fa1(P) * foo(P) = far (D) - Sp(faa (P))-
Set v1 = fz,(p), v2 = fa,(p). Next we want to prove S, is self-adjoint. Given
&,nin Tf,, we write £ = civ1 + cov2 and 1 = dyjvy + dava. Since S is linear,
Sp(€) - = c1d1Sp(v1) - v1 + c1d2Sy(v1) - v2 + c2d1Sy(v2) - v1 + c2da Sy (v2, v2),
Sp(n) - & = c1d1Sp(v1) - v1 + c1daSp(v2) - v1 + cad1 Sp(v1) - V2 + cad2Sp(v2) - V2.
But we have shown that Sp(v1) - v2 = v1 - Sp(v2), s0 Sp(§) -n =& - Sp(n). O

Let II, denote the symmetric bilinear form on 7'f,, associated to the self-adjoint

operator Sp, i.e.,

1L, : Tf, xTf, = R
is defined by

IL,(&,m) = S(§) - -
It is easy to check that II is bilinear, and is symmetric because S, is self-adjoint.
So the coefficient matrix (¢;;) of II,, with respect to basis {fz, (p), f2,(p)} of T'f,
are given by

gij :IIp(fm”fm7) = Sp(frt) 'ffj = 7N$i f:67 = Nlex,
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Hence
I = ¢11da? + 2010dxdxy + lopda?,
which is called the second fundamental form of f.

Example 2.6.3. (The graph of u). Let u : O — R be a smooth function,
and f : O — R? the graph of u, i.e., f(z1,22) = (21,72, u(r1,22)). A direct
computation implies that

— — 1
Jo, = (1?07u371)7 f;zz = (O,l,uw), N = Jor X Jay = ( oy oo )

[ far X fosll \/1+u§'1 +u%2.
fmimj = (070,uxix_j)~

So we have

911 = for [z, =1 +Uil, 912 = for - foy = U Ugy,  G22 = foy - Jo, =1 +U22,
i =N - foppy, = 2
1] CEil‘j 1 + fu,il + U%Q

and the two fundamental forms are
2

I= Z gijduida; = (14l )de] + 2ug, ug,deides + (14 ul))dz3,
i=1

2 1

II = Z gijd.ﬁidl’j -
Pt \/l—i—ug +u?,

The area of the surface f(D)

// mtdmdwz // mdmdmg

The meaning of the second fundamental form II

(uwlajldx% + 2uy, podxrdas + uwﬂ?dmg).

Fix pp € O and a unit tangent vector & of f at pg, let o denote the intersection
of the surface f(O) and the plane E spanned by & and the normal vector N (po).
Then o is a curve lies on the plane E and will be called the plane section of f at
po defined by &.

Theorem 2.6.4. (Meusnier’s Theorem) The curvature of the plane section of a
parametrized surface f: O — R3 at py defined by a unit tangent vector & in Tf,,
is equal to 11, (€,€).

Proof. We may assume there is ¢ : (—¢,e) — O such that ¢(0) = pg, o(s) =
f(e(s)) = f(c1(s), ca(s)) parametrized by arc-length is the plane section defined by
&. Then

0'(s) = ex(s) = fa, (c1(s), c2())ci(5) + fan (c1(s), ca(s))h(s),
0"(5) = €1(8) = farar (c(8))€1(8)” + 2 w105 (c(8))C1(8)Ch(8) + Faaaa (c(s))ch(5)*.

The normal of o at s = 0 is N(pp), i.e., e2(0) = N(po). But the curvature of o at
s=01is

s5k(0) = €1(0) - e2(0) = " (0) - N(po)
= 10 fay2: (P0) - N(po) + 2¢1(0)ch(0) frrzo (P0) - N(p0) + 5(0)? fas () - N (p0)
= 011(po)c} (0)* 4 2612(po)ch (0)¢5(0) + La2¢5(0)* =TTy, (£, €).
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Example 2.6.5.

(1) Let f(x,y) = (x,y,0) (a plane). Then N = (0,0, 1) and any plane section
is a straight line. So II(£,&) = 0 for all unit tangent vector &, thus II is
Z€ero.

(2) Let f(x,y) = (cosz,sinz,y) (the cylinder with unit circle as the base).
A simple computation implies that N(z,y) = (—sinx,cosx,0) is the unit
normal. The plane section of f defined by & = f.,(po) = (0,0,1) is a
straight line, so the curvature is zero. Thus II, (§,£) = 0. The plane
section of f defined by n(py) = (—sinz,cosz,0) is a circle of radius 1, so
its curvature is 1, which implies that IL, (n,n) = 1.

(3) Let O = {(z,y) | 2* +y* < 1}, and f(z,y) = (z,y,V/1 -2 —y?) (a
hemi-sphere). Every plane section is a part of the great circle, hence the
curvature is 1, which implies that II(£,£) = 1 for all unit tangent vector &.

Example 2.6.6. Let O = {(z1,22) | 21 € (0,27),22 € R}, f,h: O — R? defined
by f(z1,2z2) = (21,22,0) and h(z1,2z2) = (coszy,sinzy,z2). So f is the plane
region (0,27) x R x {0} and A is the the cylinder minus the line {(1,0,t) | t € R}.
A simple computation implies that The first and second fundamental forms for f
and h are

[=da?+dr3, =0,
I=da? +da2, "1 = da?,

respectively. Note that f and h have the same first fundamental form, so the
geometry involving arc length, angles and areas on the two surfaces are identical.
The shortest curve jointing two points (p,0), (¢,0) in the surface f is the straight
line t — (p + t(q — p),0), so the shortest curve joining p to ¢ in the surface given
by g is also t — h(p + t(¢ — p)). Thus the geometry of triangles on f and on h are
the same. In fact, the map f(x,y) — h(z,y) is an "isometry” (preserving the first
fundamental form). Properties that depend only on the first fundamental form are
called intrinsic properties.

2.7. Eigenvalues and eigenvectors.

Let V be a vector space, and S : V — V a linear map. A non-zero vector v € V
is an eigenvector of S with eigenvalue \g if S(v) = Agv.

Recall that if A is an n x n real matrix, then for A\g € R, det(A — AoI) = 0 if and
only if there exists non-zero u € R™ such that Au = A\gu. We call \g an eigenvalue
and u an eigenvector of the matrix A. If S : R® — R" is the linear map defined by
S(xz) = Ax, then eigenvalues and eigenvectors of A are the same as for the linear
opearator S. For a linear map on a general vector space, we have

Proposition 2.7.1. Let A denote the matrixz associated to the linear operator S :
V — V with respect to the basis {v1,...,v,}. Then
(1) Ao € R is an eigenvalues of S if and only if det(A — \oI) =0,
(2) if Au = Mou, then v = uivy + ... + u,vy, is an eigenvector of S, where
w=(ug,...,up).
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Proof. By definition, S(v;) = Z?’Zl a;;v;. Since S is linear, we have

n n n n n n
S( E uivi) = E ’U,ZS(’UZ) = E U; E ajiV; = E E QUi Vj.
i=1 i=1 i=1 j=1

j=11i=1

But >°" , aj;u; is the j1-th entry of Au, which is A\ou, so it is equal to Agu;. Thus
S iy wivi) = Xo 2o ujvy, and Y01 wiv; is an eigenvector of S with eigenvalue
Xo- U

a

b

(1) A has two real eigenvalues A1, Az,

(2) Ay = det(A), A+ A= tr(A) =a+ec,

(3) there is an o.n. basis {vi,v2} of R? such that v; is an eigenvector with
eigenvalue \; for i = 1,2 (we call {vi,v2} an o.n. eigenbase of A).

Proposition 2.7.2. Let A = < l;) (real, symmetric 2 x 2 matriz). Then

Proof. To find eigenvalues for A, we need to solve

a— A b

det(A — AI) by

=(@—=N(c—=N)—=b=X—(a+c)\+ac—b*=0.

Since the discriminant A is (a+c¢)? —4(ac—b?) = (a—c)? +4b* > 0, this quadratic
polynomial has two real roots:
1 1
AL = §(a—|—c+ (a—c)2+0b2), A\ = 5((1—&—0— V(e —c)?+b?).
This proves (1) and (2).
If the A is zero, then a = ¢ and b = 0, so A = al and {(1,0)%,(0,1)!} is an o.n.
eigenbase of A. If A > 0, then (A — \;)&; = 0 can be solved easily:

¢ ( ba—c—\/(a—c)2+b2>t ¢ ( ba—c—!— (a—c)2—|—b2>t
1=19 ) 2= 19

2 2

are eigenvectors of A with eigenvalues A1, A2 respectively. But &;-& = 0, so {v1, va}
is an o.n. eigenbase for A, where {v; = & /||&1]] and v = & /]|&][}- O

The above Proposition is a special case of the following general Theorem in linear
algebra:

Theorem 2.7.3. If A is a real, symmetric n X n matriz, then A has n real eigen-
values A1, ..., An and there is basis {uy,...,u,} of R™ such that Au; = \ju; for all
1 <4 <n. (We call such basis an o.n. eigenbase for A).

We have shown that the matrix associated to a self-adjoint operator with respect
to an o.n. basis is symmetric. So we conclude:

Theorem 2.7.4. (Spectral Theorem)
Let (,) be an inner product on V, dim(V) = n, and S : V. — V a linear
self-adjoint operator. Then
(1) S has n real eigenvalues A1, ..., Ay,
(2) there is an o.n. basis {vy,...,vn} of V such that S(v;) = \jv for1 <i < n.
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Proposition 2.7.5. Let (,) be an inner product on V, dim(V)=n, S:V -V a
linear self-adjoint operator, {v1,...,v,} an o.n. eigenbase of S, and S(v;) = A\v;
for1<i<n. Letb®:V x V — R be the symmetric bilinear form associated to S,
i.e., b5(&,m) = (S(€),n). Then

Hnll\igl b (v,0) = A\ = b5 (vy), \\Hﬁ?fl b (v,v) = Ay = b5 ().
Proof. Let {v1,...,v,} be an o.n. eigenbase of S with eigenvalues A1,..., \, re-
spectively. Then

n n n n n n
b TiU;, ZT;U; = S Tiv; |, T;U; = -ri/\i'Uia TjV;
i=1 i=1 i=1 j=1 i=1 j=1
n
K2
i=1

The norm |Jv|| = 1 if and only if >, | 27 = 1. But the maximum and minimum
value of Alx% + ...+ /\nac?I on the set 2?21 mf =1 are A, and A\ respectively. [

2.8. Principal, Gaussian, and mean curvatures.

Since the shape operator S, is a self-adjoint operator on the tangent plane T'f,
of a parametrized surface f : O — R3, as a consequence of the Spectral Theorem
we have

Proposition 2.8.1. The shape operator of a parametrized surface f : O — R? at
f(p) has two real eigenvalues and an o.n. eigenbase.

Definition 2.8.2.

(1) The eigenvalues k1, ko of the shape operator S, of the parametrized surface
f: O — R3 at p are called the principal curvatures and principal directions.

(2) The Gaussian curvature of f is K = kyks.

(3) The mean curvature of f is H = ky + k.

(4) The principal directions of f at p are the unit eigenvectors vy, vy of the
shape operator Sj.

We have shown before that the matrix of the shape operator S with respect to
the basis {fs,, fo, } is A = G71L, where G = (gi;), L = ({i;), gi; and {;; are the

a

coefficients for I and II. Note that if B = (C is invertible, then it is easy to

b
d

1 d —b
B = :
ad — bc <—C a )

By Proposition 2.7.1, K = k1ka = det(A) and H = ky + ko = tr(A), so

check that

K _ d@t(&]) _ 611522 76%2
det(gij) 911922 — 9%

(2.8.1)



31

We compute the matrix A of the shape operator:

A=G"'L = ; 922 —gi2 iy Ly
11922 — gis \—912 911 [APRZY)
1 ( 922511 - 912512 922512 - 912422 )

- 911922 — 9%2 —g12011 + g11f12  —g12f12 + g11la2
S0

_ 922611 — 2012012 + g11lag
911922 — 9%2
It follows from Proposition 2.7.1 that

H

(1) the principal curvatures kq, ko are eigenvalues of A = G~1L,

(2) if <Zl> and (7;2) are eigenvectors of A = G~'L with eigenvalues ki, ko,
1 2

then vy = ry fo, + s1fz, and vy = rafz, + Sofz, are in principal directions.
Example 2.8.3. For cylinder f(z1,z2) = (coszy,sinxy,z2), we have
f%l :(—Sinl‘l,COSJfl,O), fwz :(0)071)7
forz, = (—coszy, —sinz1,0),  fezo = (0,0,0),  fr,zo = (0,0,0),
N=——""—""- = (coszy,sinzy,0),
[for X fasl]
SO
g1 =gz =1, g12=0,
b1 = =1, l1p =1l =0,

. . -1 -
and the matrix for the shape operator is A = G~'L = 0 8) So the principal
curvatures k1 = —1,ky = 0 and f,,, fz, are the principal directions.

Example 2.8.4. If f is a parametrization of a piece of a sphere of radius r centered
at the origin, then the unit normal vector at f(p) is N(p) = %f(p) So the shape
operator Sp,(fz,) = Ny = Lfs, for i = 1,2. This implies that S = —rld and
II(¢,n) = S(¢) -n = —rE-n = —rl. The eigenvalues of S are —l,—%, hence

H=-2/rand K =1/r%
Example 2.8.5. For f(z,y) = (z,y,2? + y?), we have
(—2x,—2y,1)

1+ 422 + 492

fzx:(0a0a2)7 f:cy207 fyy:(0a072)

fo=(1,0,2z), f,=(0,1,2y), N=

So
g =1+42% g =day, g =1+4y°
2
by =Ly = ——————, [Ll12=0,
1+ 4x? + 4y?
- det(£;;) _ 4 _ 4(1 + 222 + 2y?)

det(gi;) (14 4a? +4y?)?’ (1+4a2 4 4y?)3/2



32

Exercise 2.8.1.

(1) Let h: (0,00) — R be a smooth function, O = {(x,y) | = > 0,y € R}, and
f: O — R? defined by

fa = eonen ()

Prove that all tangent planes of f pass through the origin (0,0, 0).

(2) Let O = {(z,y) | #® +y? < 1}. Prove that if all normals to a parametrized
surface f : O — R3 pass through a fixed point qo, then f(O) must lie in a
sphere centered at qq.

Exercise 2.8.2.
Compute I, 11, H, K of the following parametrized surfaces:
(1) Let a : (a,b) — R be a smooth curve parametrized by arc-length with
positive curvature, O = (a,b) x (0,00), and f : O — R? defined by
f(s,t) = a(s) +ta/(s).
(2) Let O = (0,27) x (0,7), f: O — R? defined by
f(0,¢) = (sin g cosf,sin psin b, cos ¢).
(This is a sphere)
3) flu,v) = (u— “g +uv? v — g +vu? u? —v?).
(4) Let a(s) = (x(s),y(s)) be a plane curve parametrized by arc length such

that z(s) > 0, and f(s,t) = (z(s) cost, y(s), z(s) sint) (the surface obtained
by rotating the curve a about the y-axis).

3. Fundamental Theorem of Surfaces in R?

3.1. Frobenius Theorem.

Let O be an open subset of R?, f,g : O — R smooth maps, (z9,%0) € O, and
cp € R. Then the initial value problem for the following ODE system,

5 = f(z,y),
G =g(z,y),

u(zo, Yo) = co,
has a smooth solution defined in some disk centered at (zg,yo) for any given

(z0,y0) € O if and only if f, g satisfy the compatibility condition
of 0Oy

dy Oz
in O. Moreover, we can use integration to find the solution as follows: Suppose
u(z,y) is a solution, then the Fundamental Theorem of Calculus implies that

u(z,y) = v(y) + /w f(t,y) dt
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for some v(y) such that v(yg) = ¢g. But

uy =v'(y) + / % dt =v'(y) +/ % dr =v'(y) + g(z,y) — g(xo,y)

0 Zo

should be equal to g(z,y), so v'(y) = g(xo,y). But v(yo) = co, hence

v(y) = co + /yg(:vo, s)ds.

Yo

In other words, the solution for the initial value problem is

y T
ueg) = ot [ gtans) ds+ [ fiey) at
Yo Zo
Given smooth maps A, B; O x R — R, we now consider the following first order
PDE system for u: O — R:

(3.1.1) ge

{gg = A(z,y, u(z,y)),
o = B(:E,y,u(%y))

If we have a smooth solution u for (3.1.1), then (ug), = (uy),. But

(ua:)y = (A(x,y,u(sc,y))y = Ay + Auuy = Ay + AUB

Thus A, B must satisfy the following condition:
(3.1.2) Ay + A,B =B, + B,A.

The Frobenius Theorem states that (3.1.2) is both a necessary and sufficient con-
dition for the first order PDE system (3.1.1) to be solvable. We will see from the
proof of this theorem that, although we are dealing with a PDE, the algorithm to
construct solutions of this PDE is to first solve an ODE system in x variable (first
equation of (3.1.1) on the line y = gg), and then solve a family of ODE systems
in y variables (the second equation of (3.1.1) for each ). The condition (3.1.2)
guarantees that this process produces a solution of (3.1.1). We state the Theorem
foru: O — R™

Theorem 3.1.1. (Frobenius Theorem) Let U; C R? and Uy C R" be open
subsets, A = (Ay,...,A4,),B = (B1,...,By) : Uy x Uy — R™ smooth maps,
(z0,y0) € Uy, and pg € Uy. Then the following first order system

% = A(.’L‘, y,u(:v,y)),
(3.1.3) 55 = B(z,y. u(z,y)),
u(an yO) = Po,

has a smooth solution foru in a neighborhood of (xo,yo) for all possible (xo,yo) € Uy
and py € Uy if and only if

"L 9A; " 9B; )
B,:(Bi)er;aujAj, 1<i<n,

(3.1.4) (Ai)y +

j=1

hold identically on Uy x Us.

-bj
ou;
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Equation (3.1.3) written in coordinates gives the following system:

G = Ai(z, g, (2,9), .. un(z,y), 1<i<n,
8871;;:Bi(x7yau1(x7y)a"'aun(xvy))a 1S2§na
ui(anyO) :p?v

where pg = (p9,...,p9).

We call (3.1.4) the compatibility condition for the first order PDE (3.1.3).

To prove the Frobenius Theorem we need to solve a family of ODEs depending
smoothly on a parameter, and we need to know whether the solutions depend
smoothly on the initial data and the parameter. This was answered by the following
Theorem in ODE:

Theorem 3.1.2. Let O be an open subset of R™, ty € (ap,bo), and f : [ag, bo] X
O x |a1,b1] = R™ a smooth map. Given p € O and r € a1, b1], let y»" denote the
solution of

dy

dt = f(t7y(t)ar), y(to) =D,
and u(t,p,r) = yP"(t). Then u is smooth in t,p,r.

Proof. Proof of Frobenius Theorem

If u= (uy,...,uy,) is a smooth solution of (3.1.3), then a% %’;" = % gZ' Use the
chain rule to get
9 Ou; 0 0A; <~ 0A; Ou,
— = A cy Up = =
DA; <= DA;
= oy Ty
Yy = U
9 ou; 0 0B; = 0B; Ou;
v i 7Bz _ [ i Uy
Ox 0y  Ox @,y ul@,y)) Ox Jrj:l duj Oz
_ 0B; N c')BiA

Ox = ou; 7’
J=1

so the compatibility condition (3.1.4) must hold.

Conversely, assume A, B satisfy (3.1.4). To solve (3.1.3), we proceed as follows:
The existence and uniqueness Theorem of solutions of ODE implies that there exist
d>0and a: (xg— 5,20+ ) — Us satisfying

(3.1.5) o = Az, y0, oz)),
a(z0) = po.

For each fixed € (zg — 0,20 + 0), let 5%(y) denote the unique solution of the
following ODE in y variable:

a4 _ @

B*(yo) = a(z).
Set u(x,y) = 6%(y). Note that (3.1.6) is a family of ODEs in y variable depending
on the parameter z and B is smooth, so by Theorem 3.1.2, u is smooth in z,y.
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Hence (ug)y = (uy),. By construction, u satisfies the second equation of (3.1.3)
and u(xg,yo) = po. It remains to prove u satisfies the first equation of (3.1.3). We
will only prove this for the case n = 1, and the proof for general n is similar. First
let
Z({E, y) = Uy — A(xv Y, u(w, y))
But
zy = (ue — A(@,y, 1))y = Uey — Ay — Auuy = (Uy)2 — (Ay + AuB)
= (B(z,y,u))s — (Ay + AyB) = B, + Byu, — (A, + A, B)
= By + Byu, — (Bz + BUA) = Bu(um - A) = Bu(x»yvu(xvy))z'

This proves that for each z, h*(y) = z(z, y) is a solution of the following differential
equation:

dh
Since « satisfies (3.1.5),

Z(l’,yo) = uz(x7y0) - A(:ayo,u(x,yo)) = O/((E) - A(x,yo,a(x)) =0.

So h® is the solution of (3.1.7) with initial data h*(yp) = 0. We observe that the
zero function is also a solution of (3.1.7) with 0 initial data, so by the uniqueness
of solutions of ODE we have h* = 0, i.e., z(z,y) = 0, hence u satisfies the second
equation of (3.1.3). O

Remark 3.1.3. The proof of Theorem 3.1.1 gives the following algorithm to con-
struct numerical solution of (3.1.3):

(1) Solve the ODE (3.1.5) on the horizontal line y = yo by a numerical method
(for example Runge-Kutta) to get u(xg, yo) for z = x¢ + ke where € is the
step size in the numerical method.

(2) Solve the ODE system (3.1.6) on the vertical line x = xy, for each k to get
the value u(zk, Ym).

If A and B satisfies the compatibility condition, then u solves (3.1.3).

Let gl(n) denote the space of nxn real matrices. Note that gl(n) can be identified
as R, For P,Q € gl(n), let [P, Q] denote the commutator (also called the bracket)
of P and @ defined by

[P, Q] = PQ — QP.
Corollary 3.1.4. Let U be an open subset of R?, (z9,y0) € U, C € gl(n), and
P,Q : U — gl(n) smooth maps. Then the following initial value problem for u :
U — gl(n)

Uy = U(I,y)P(I,y),
(3.1.8) uy = u(z,y)Q(z,y),

u(zo,y0) = C
has a smooth solution u defined in some small disk centered at (zo,yo) for all

possible (xo,yo) in U and C € gl(n) if and only if
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Proof. This Corollary follows from Theorem 3.1.1 with A(z,y,u) = uP(z,y) and
B(z,y,u) = uQ(z,y). We can also compute the mixed derivatives directly as
follows:

(Uz)y = (UP)y = uy P +uP, = (uQ)P + uP, = u(QP + P),
(uy)e = (UQ)s = s Q + uQy = (uP)Q + uQy = u(PQ + Qz).
Thus w(QP + Py) = u(PQ + Q). So the compatibility condition is
QP + Py = PQ+ Qa,
which is (3.1.9). O
Remark 3.1.5. Given gl(3)-valued smooth maps P = (p;;) and Q = (g;;), equation

(3.1.8) is a system of 9 equations for 18 functions p;;, ¢;;. This is the type of equation
we need for the Fundamental Theorem of surfaces in R?. However, if P and Q are

skew symmetric, i.e., PT = —P and Q7 = —Q, then [P, Q)] is also skew-symmetric
because
[P.QI" =(PQ-QP)" =Q"PT — PTQ" = (=Q)(=P) = (-P)(-Q)
—QP - PQ=-[P.qQ).

In this case, equation (3.1.8) becomes a system of 3 first order PDE involving six
functions p12, p13, P23, 12, ¢13, ¢23-

Proposition 3.1.6. Let O be an open subset of R?, and P,Q : O — gl(n) smooth
maps such that PT = —P and Q7 = —Q. Suppose P,Q satisfy the compatibility

condition (3.1.9), and the initial data C is an orthogonal matriz. If u : Oy — gl(n)
is the solution of (3.1.8), then u(x,y) is an orthogonal matriz for all (x,y) € Op.

Proof. Set

&z, y) = ulz,y) u(z,y).

YTu(z0,y0) = I, the identity matrix. Compute directly to

Then £(20, yo) = u(zo, Yo
get
& = (up)Tu+uTuy = (uP) '+ u” (uP) = PTuTu+uTuP = PT¢ + €P,
&y = (uy) u+uluy = Q) u+ v’ (uQ) = QTuu + v uQ = Q"¢ +£Q.
This shows that £ satisfies

& =PTe+¢p,
& =QT¢+¢Q,
&(zo,y0) = L.

But we observe that the constant map n(x,y) = I is also a solution of the above
initial value problem. By the uniqueness part of the Frobenius Theorem, £ = 7, so

uTu =1, i.e., u(x,y) is orthogonal for all (z,y) € Oy. O

Next we give some applications of the Frobenius Theorem 3.1.1:
Example 3.1.7. Given ¢y > 0, consider the following first order PDE
Uy = 28inu,

(3.1.10) u, = 1sinu,

1(0,0) = ¢p.
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This is system (3.1.3) with A(z,y,u) = 2sinu, B(z,y,u) = $sinu. We check the
compatibility condition next:

1
Ay +A,B=0+ (2cosu)(§ sinu) = cosusinu,
1
B, +B,A=0+ (5 sinu)(2 cosu) = sinu cos u,

so Ay + A,B = By + B, A. Thus by Frobenius Theorem, (3.1.10) is solvable. Next
we use the method outlined in the proof of Frobenius Theorem to solve (3.1.10).

(i) The ODE
Z—g = 2sinq,
a(0) = ¢
is separable, i.e., Sidﬁ = 2dx, so fgi—o‘a = f2d:r. This integration can be solved
explicitly:

a(r) = 2tan"'exp(2z + ¢).
But a(0) = ¢o = 2tan™! ¢ implies that ¢ = In(tan ).

(ii) Solve
‘;—Z = %sin U,
u(z,0) = a(xr) = 2tan"1(2x + ¢).
We can solve this exactly the same way as in (i) to get
u(z,y) = 2tan™* (exp(2z + % +¢)),

where ¢ = In(tan §).

Moreover, if u is a solution for (3.1.10), then
1
(Uz)y = (2sinu), = 2cosu u, = (2cosu)(§ sinw) = cosusin u,

so u satisfies the following famous non-linear wave equation, the sine-Gordon equa-
tion (or SGE):
Ugy = SIN U COS U.
The above example is a special case of the following Theorem of Backlund:

Theorem 3.1.8. Given a smooth function g : R? — R and a non-zero real constant
r, the following system of first order PDE is solvable for u : R? — R:

{Us = —qs + rsin(u — q),

3.1.11
( ) uy = g + Lsin(u + g).

if and only if q satisfies the SGE:
Qst = sinqcosg, SGE.
Moreover, the solution u of (3.1.11) is again a solution of the SGE.

Proof. If (3.1.11) has a C? solution u, then the mixed derivatives must be equal.
Compute directly to see that

(us)s = —gst + 1 cos(u — g)(u = q)s

1
= —qst + rcos(u —q) (r sin(u + q)) ,
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so we get
(3.1.12) (us)t = —qst + cos(u — ¢) sin(u + q).
A similar computation implies that
(3.1.13) (ut)s = qrs + cos(u + q) sin(u — q).
Since ug; = uts and sin(A £ B) = sin A cos B £ cos Asin B, we get
—qst + cos(u — q) sin(u + q) = qis + cos(u + ¢) sin(u — q),

S0

2qst = sin(u + q) cos(u — q) — sin(u — ¢) cos(u + q) = sin(2¢q) = 2singcosg.

In other words, the first order PDE (3.1.11) is solvable if and only if ¢ is a solution
of the SGE.
Add (3.1.12) and (3.1.13) to get

2ugt = sin(u + q) cos(u — ¢) + sin(u — q) cos(u + ¢q) = sin(2u) = 2 sin u cos u.
This shows that if w is a solution of (3.1.11) then wug = sinu cosu. O

The above theorem says that if we know one solution ¢ of the SGE then we can
solve the first order system (3.1.11) to construct a family of solutions of the SGE
(one for each real constant r). Note that ¢ = 0 is a trivial solution of the SGE.
Theorem 3.1.8 implies that system (3.1.11) can be solved for u with ¢ =0, i.e.,

1 fro e
up = - sinu
is solvable. (3.1.14) can be solved exactly the same way as in Example 3.1.7, and
we get
u(s,t) = 2arctan (em+% t) ,

which are solutions of the SGE. The SGE is a so called “soliton” equation, and
these solutions are called ”1-solitons”. A special feature of soliton equations is the
existence of first order systems that can generate new solutions from an old one.

3.2. Line of curvature coordinates.

Definition 3.2.1. A parametrized surface f : O — R? is said to be parametrized
by line of curvature coordinates if g1o = f12 = 0, or equivalently, both the first and
second fundamental forms are in diagonal forms.

If f: O — R3 is a surface parametrized by line of curvature coordinates, then
I= glldl‘% + gzﬂil’%, II = éndxf + gzzdl’%.

The prinicipal, Gaussian and mean curvatures are given by the following formulas:

Y4 Y4 J4 {114
kgt gt e fube
g11 g22 g11 g22 g11922

-
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Example 3.2.2. Let u : [a,b] — R be a smooth function, and
f(y,0) = (u(y)sin b, y, u(y) cos ),

so the image of f is the surface of revolution obtained by rotating the curve z = u(y)
in the yz-plane along the y-axis. Then

fy = (W (y)sinf, 1,4 (y) cosh),
fo = (u(y) cos 8,0, —u(y)sinb),
_ fy X fo _ (—sinf, v (y), — cos )
[ fy x foll 1+ (W(y))?
Jyy = (W' (y)sinb,0,u" (y) cos 6),
fyo = (' (y) cos 0,0, —u/(y) sin6),
foo = (—u(y)sin 6,0, —u(y) cosb).

3

So

g =14+ W®)> g2=uly)? g2=0,
o
_ ui(y) loo = % lip =0,

b = ;o o = ;
V1t (W(y))? V1+ (W(y))?

i.e., (y,0) is a line of curvature coordinate system.

Proposition 3.2.3. If the principal curvatures ki(po) # ka(po) for some pg € O,
then there exists 6 > 0 such that the ball B(pg,d) of radius & centered at pgy is
contained in O and ky(p) # ka(p) for all p € B(py, 7).

Proof. The Gaussian and mean curvature K and H of the parametrized surface
f : O — R3 are smooth. The two principal curvatures are roots of A2 — HA+K = 0,
SO we may assume

_HVA*IK | H-VH? 1K
- 2 o 2 '
Note that the two real roots are distinct if and only if u = H? — 4K > 0. If
k1(po) # k2(po), then u(pg) > 0. But w is continuous, so there exists 6 > 0 such
that u(p) > 0 for all p € B(po,d), thus ki(p) # k2(p) in this open disk. O

ki

A smooth map v : O — R3 is called a tangent vector field of the parametrized
surface f: O — R3 if v(p) € T'f, for all p € O.

Proposition 3.2.4. Let f : O — R? be a parametrized surface. If its principal
curvatures ki(p) # ko(p) for all p € O, then there exist smooth, o.n., tangent
vector fields e1,ea on f that are e1(p),ea(p) are eigenvector for the shape operator
Sp for allp e O.

Proof. This Proposition follows from the facts that

(1) self-adjoint operators have an o.n. basis consisting of eigenvectors,

(2) the shape operator S, is a self-adjoint linear opeartor from T'f, to T'f,,

(3) the formula we gave for self-adjoint operator on a 2-dimensional inner prod-
uct space implies that the eigenvectors of the shape operator are smooth
maps.

O
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We assume the following Proposition without a proof:

Proposition 3.2.5. Let f : O — R? be a parametrized surface. Suppose &;,&5 :
O — R3 are tangent vector fields of f such that &1 (p), &2(p) are linearly independent
for all p € O. Then given any po € O there exists § > 0, an open subset U of R?,
and a diffeomorphism ¢ : U — B(po,d) such that & and & are parallel to hy, and
h, respectively, where h = fo¢: U — R3.

As a consequence of the above two Propositions, we see that

Corollary 3.2.6. Let f : O — R3 be a parametrized surface, and py € O. If
k1(po) # k2(po), then there exist an open subset Ogy containing po, an open sub-
set U of R?, and a diffeomorphism ¢ : U — Oy such that f o ¢ is parametrized
by lines of curvature coordinates. In other words, we can change coordinates (or
reparametrized the surface) near py by lines of curvature coordinates.

We call f(po) an umbilic point of the parametrized surface f : O — R3 if
k1(po) = k2(po). The above Corollary implies that away from umbilic points, we
can parametrized a surface by line of curvature coordinates locally.

3.3. The Gauss-Codazzi equation in line of curvature coordinates.

Suppose f : O — R? is a surface parametrized by line of curvature coordinates,
i.e.,
912 = fu, - fz, =0, lia= fr,0, - N =0.
We define Ay, Ay, 71,72 as follows:

gllzfrl'fw1 :A%, 922:f12'fx2 :A%7
b = forw N =r141, {o2 = fegas - N = 1245,
Or equivalently,

Y4 Y4
A1:\/9117 A2:\/922, 7"1:&, 7"2:2-
Ay Ay

Set

oo
A Ay
Then (eq, €2, e3) is an o.n. moving frame on the surface f. Recall that if {vq, ve,v3}
is an orthonormal basis of R, then given any ¢ € R3, ¢ = Zle aje;, where
a; = £ - e;. Since (e;)z, and (e;),, are vectors in R?, we can write them as linear
combinations of ey, e; and es. We use p;; to denote the coefficient of e; for (e;)q,
and use ¢;; to denote the coefficient of e; for (e;),, i.e.,

€1 €9 63:N.

(€1)z, = p11€1 + pa1e2 + pP31e3,

(€2)z, = p12€1 + p2ze2 + p32es,
(3.3.1) (€3)e; = p13€1 + pazes + pazes,

(€1)z, = qui€1 + G162 + g31€3,

(€2)z, = qr2€1 + Ga2e2 + g32€3,

(€3)z, = qu3€1 + qa3ea + gazes,
where

bij = (ej)ml *€iy Qi = (ej)$2 c €.
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Recall that the matrix P = (p;;) and @ = (g;;) must be skew symmetric because
(€i-ej)ey = 0= (€i)x, - €+ €i-(&)a; = Pji + Dij-

Next we want to show that p;; and ¢;; can be written in terms of coefficients of
the first and second fundamental forms. We proceed as follows:

p12:(€2)z1~61: ({:22) ’&: <fm2m1 fmz(AQ):m) h

A As A2 A
_ fﬁl)liEQ : fa:l - (A2)m1 f . f _ %(f:m 'fﬂll)ﬂCz _ %(A%)ﬂﬁz —0
A1A2 AlAg 2 . A1A2 A1A2
A (A1), (AL,
A Ay, Ay
. _ fwl _ fﬂvlwl fwl (Al)frl
P31 = (€1)a, - €3 = (A1 B =\ "7, A2 N
fICliEl - N (Al)ﬂh i
= — 2 ° N = — — = .
A Az o A4, =N
fwz fﬂﬂzwl fﬂvz (AZ)JW
_ cea—= (12} N = _ N =
P32 = (€2)x; - €3 ( 4), A, A2 0

So we have proved that

A
P12 = ( jl)xz, p31 =711, p32=0.
2

In the above computations we have used fz, - fo, =0, fo,0, - N =0, fz, - N =
fzo - N = 0. Similar computation gives

(A2)931
q12 A q31 y 432 =T2
Since P, are skew-symmetric, we have
R 0 U0
(3.3.2) P=1_ (A:‘lw 0 0 ., Q= (Az)lm 0 —ry
71 0 0 0 T2 0

So (3.3.1) becomes

(e1)z;, = —7(14;;);2 ez +ries,
At)z

(62);81 - %613

(e3)ay, = —T1€1,
Az)z

(e1)ay = P2rey,

(€2)zy = —%61 + raes,

(63)x2 = —T9€9.

We can also write (3.3.1) in matrix form:

{(617 €2, 63)LE1 - (ela €2, 63)P7

3.3.3
( ) (61762763)2‘:2 = (61762563)Q7



42
where P,(Q are given by (3.3.2). It follows from Corollary 1.04 [] of the section on
Frobenius Theorem [] that P, Q) must satisfy the compatibility condition
Pry — Qey = PQ - QP.
Use the formula of P, @ given by (3.3.2) to compute directly to get
PQ - QP

0 p —r 0 q 0 0 qg O 0 p —r
=(-p 0 O —q 0 —-r9l—1—q 0 O |-p 0 O
T1 0 0 0 T2 0 0 T2 0 T1 0 0
0 —riry  —pra
= | rr 0 —qr1 |,
pra qri 0
0 Pzs qxq (Tl)«’vz
Pﬂﬁz - Qm = _(pwz - qu) 0 (T2>11 )
(T1)3?2 _(T2)£C1 0
where
p= (Al)ﬂﬂz qg=— (A2)I1
Ay Ay
Since
PQ_QP_PIQ QCEU
we get
e R =
T2 ZT1
3. ()ea = O 1,
(r2)a, ( jl” r1

System (3.3.4) is called the Gauss-Codazzi equation. So we have proved:

Theorem 3.3.1. Let f : O — R3 be a surface parametrized by line of curvature
coordinates, and

Y4 Y4
AL =911, Az =/g22, T =2l =2
Ay Aq
Set

T A 7 ¥
Al’ AQ’ ||fw1><fw2”

Then Ay, As, 11,79 satisfy the Gauss-Codazzi equation (3.3.4) and

el =e€1 X €ég.

Ay 0 (A:‘);Q —r
(f7€1;62763)xl = (61762363) 0 —% 0 0
0 T1 0
3.3.5
(3:35) o ot
(f.e1,e2,€3)z, = (e1,€2,€3) Ao % 0 —r9
0 0 ro 0
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3.4. Fundamental Theorem of surfaces in line of curvature coordinates.

The converse of Theorem 3.3.1 is also true, which is the Fundamental Theorem
of surfaces in R? with respect to line of curvature coordinates:

Theorem 3.4.1. Supppose A1, Az, 71,72 are smooth functions from O to R, that
satisfy the Gauss-Codazzi equation (3.3.4), and A1 > 0, As > 0. Given pg € O,
yo € R3, and an o.n. basis vy, vy, v3 of R, then there exist an open subset Oy of
O containing py and a unique solution (f,eq,ea,e3) : Oy — (R®)* of (3.3.5) that
satisfies the initial condition

(fu €1, €2, 63)(170) = (y()aUlyUZu UB)-

Moreover, f is a parametrized surface and its first and second fundmental forms
are

=A% da? + A2 dx3, T =r Ay do? + 1Ay dal.

Proof. We have proved that the compatibility condition for (3.3.3) is the Gauss-
Codazzi equation (3.3.4), so by the Forbenius Theorem (3.3.3) is solvable. Let
(e1, €2, e3) be the solution with initial data

(617 €2, 63)([)0) = (Ulv V2, ’U3)'

Since P, Q) are skew-symmetric and (v1,ve,v3) is an orthogonal matrix, by Propo-
sition 1.0.6 of the section on Frobenius Theorem that the solution (e1, eq,e3)(p) is
an orthogonal matrix for all p € O. To construct the surface, we need to solve

=A
(3.4.1) for = e,
fzy = Azea.
Note that the right hand side is known, so this system is solvable if and only if
(Are1)z, = (A2€2)a, -

To see this, we compute

A2)a,y
(Are1)z, = (A1)a,e1 + Ar(€1)a, = (A1)ase1 + A1 : /213 ©
= (Al);w@l + <A2)z1627
A1),
(A2e2)q, = (A2)z 2 + Az(e2)s, = (A2)z €2 + Ao ( /112 €1

= (Az)u, €2 + (A1)z,e1,

and see that (Aj1e1)z, = (Aze2)4,, so (3.4.1) is solvable. Hence we can solve (3.4.1)
by integration. It then follows that (f,e1, ez, e3) is a solution of (3.3.5) with initial
data (yo,v1,v2,v3). But (3.4.1) implies that f,,, f., are linearly independent, so f
is a parametrized surface, e3 is normal to f, and I = A3dz? + A3dx3. Recall that

gij = ffI?ifI?j N = f:z:ixj ce3 = _(63)951. €.
So li1 = —(e3)a, - fo, = —(—rie1) - Arer = 11, liz = —(e3)s, - Arer = 0, and
log = —(63)932 -fm = —(—7"262) - Agey = 1r9A5. Thus II = A17"1d.1‘% + AQ’I‘QdQﬁ%. 0
Corollary 3.4.2. Suppose f,g: O — R3 are two surfaces parametrized by line of

curvature coordinates, and f,g have the same first and second fundamental forms

=A% da? + A2 dx3, T =1 Ay do? + 1Ay dal.
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Then there exists a rigid motion ¢ of R? such that g = ¢ o f.

Proof. Let
61 = & 62 pry @ 63 = 7fz1 X sz
Al’ A?7 Hfmxfa:zH7
gail gmz gil?l X gwg
51:77 52:77 63:7~
Al A2 Hf:cl X gﬂf2”

Fix pg € O, and let ¢(x) = Tx + b be the rigid motion such that ¢(f(po)) = g(po)
and T'(e;(po)) = &(po) for all 1 < ¢ < 3. Then

(1) ¢ o f have the same LIT as f, so ¢ o f and g have the same I, 11,
(2) the o.n. moving frame for ¢ o f is (T'e1, Tea, Tes).

Thus both (¢ o f,Te1,Tes,Tes) and (g,&1,&2,&3) are solutions of (3.3.5) with the
same initial condition (g(po),&1(po),§2(po),&3(po)). But Frobenius Theorem says
that there is a unique solution for the initial value problem, hence

(d) © fv Té-h T§27 T£3) = (ga 517 527 53)
In particular, this proves that ¢ o f = g. O

3.5. Gauss Theorem in line of curvature cooridnates.

We know that the Gaussian curvature K depends on both I and II. The Gauss
Theorem says that in fact K can be computed from I alone. We will first prove
this when the surface is parametrized by line of curvatures.

Theorem 3.5.1. Gauss Theorem in line of curvature coordinates
Suppose f: O — R3 is a surface parametrized by line of curvatures, and

1= A2dz? + A2da? 11 = ri Ayda? + ry Apdal.

(), + ()
T2 1

A1 As ’

Then

K=-
so K can be computed from 1 alone.

Proof. Recall that
. det(&j) o T’1A1T2A2 o r17r2
- det(gij) o A%A% - AlAg.
But the first equation in the Gauss-Codazzi equation is

(552) - (), oo

(), + (4)
T2 T .

AL A,

So

K=—
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3.6. Gauss-Codazzi equation in local coordinates.

We will derive the Gauss-Codazzi equations for arbitrary parametrized surface
f:0—UCR3.

Our experience in curve theory tells us that we should find a moving frame on
the surface and then differentiate the moving frame to get relations among the
invariants. We will use moving frames F' = (v1,v2,v3) on the surface to derive
the relations among local invariants, where vi = f;,, va = fu,, and vs3 = N the
unit normal. Express the x and y derivatives of the local frame v; in terms of
v1, V2, v3, then their coefficients can be written in terms of the two fundamental
forms. Since (v;)zy = (vi)yz, wWe obtain a PDE relation for I and II. This is the
Gauss-Codazzi equation of the surface. Conversely, given two symmetric bilinear
forms g, b on an open subset O of R? such that g is positive definite and g, b satisfies
the Gauss-Codazzi equation, then by the Frobenius Theorem there exists a surface
in R? unique up to rigid motion having g,b as the first and second fundamental
forms respectively.

We use the frame (fz,, fz,, V), where

Jor X fa,
[ fzy X fa, ||

is the unit normal vector field. Since f,, fz,, N form a basis of R3, the partial
derivatives of f,, and N can be written as linear combinations of f;,, fz, and N.
So we have

N =

(361) {(le’fmwN)Il :(fxpfa:z,N)P,

(fwufwz’N)a:z = (fwlvfwzaN>Q7
where P = (p;;), Q = (gi;) are gl(3)-valued maps. This means that

ferer = P11fe; + P21 fa, + 031N, farzo = Q11 fer + @21 f2, + @311,
faoz, = P12fz, + D22fz, + 32N, Jaozs = Q12fe; + 22 f2, + q32N,
Nz, = p13fz, + P23 fes + 33N, Nz, = 13 fe; + q23f2s +q33N.
Recall that the fundamental forms are given by
gij:fxi,'f%y éijszmi'ij :fT,TJ -N.

We want to express P and @ in terms of g;; and h;;. To do this, we need the
following Propositions.

Proposition 3.6.1. Let V' be a vector space with an inner product ( ,), v1,--+ ,Un
a basis of V, and g;; = (vi,vj). Let €V, & = (§,vi), and € =, x;v;. Then
x1 &1

=Gt ,
Tn n

where G = (gi;).
Proof. Note that

&= (i) = (ijvjavi) = ij(vj,vi) = Zgjixj-
=1 =1 =1
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So (517"' 7€7L)t = G(l’l,"' 7xn)t~ O

Proposition 3.6.2. The following statements are true:
(1) The gl(3) valued functions P = (p;;) and Q = (g;;) in equation (3.6.1) can
be written in terms of gi;, £ij, and first partial derivatives of g;;.
(2) The entries {pij,qi; | 1 < i,j < 2} can be computed from the first funda-
mental form.

Proof. We claim that
fﬂc,;gcj 'ka.a fx,x, 'Na Na:,-,'f;cja Nac,-'Na

can be expressed in terms of g;;,¢;; and first partial derivatives of g;;. Then the
Proposition follows from Proposition 3.6.1. To prove the claim, we proceed as
follows:

friwi * foi = %(gu)xa
foiz; * foi = 3(Gii)a, if i # 7,
fzmﬂi flj = (fly, fI])lq - fll fwﬂ,l = (gij)l‘i - %(gii)fﬂj7 if 4 #]
faie; - N = Lij,
Ny, - fu; = —Lij,
N,, - N =0.
Let
g1 g1z O
G=|g12 g2 O
0 0 1
By Proposition 3.6.1, we have
gt g 0 3(911)a, Lg11)zs  —t11
P = 912 922 0 (912)2, — %(911)_@2 %(922)1:1 —l12
0 0 1 l11 120 0
=G4,
(36.2) gt g” 0) 50112, (912)2s — 5(922)ar  —hr2
Q=149 ¢2 0 1(922) 1(922) 2 —la2
0 0 1 lio lao 0
=G4,
This proves the Proposition. (I

Formula (??) gives explicit formulas for entries of P and @ in terms of g;; and
£;;. Moreover, they are related to the Christofell symbols F; i arise in the geodesic
equation (??) in Theorem ??. Recall that

1.
Fszigk [Zjam]a

where (%) is the inverse matrix of (gi;), [i, k| = gri,j+9jk.i—Gijk, and gijr = 9915

oxy *

Theorem 3.6.3. For 1 <1i,5 <2, we have
(3.6.3) pji =T, g5 =T,
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Proof. Note that (??) implies

pi1 =3 g1 + 92 (g121 — 3911.2) =Ty,

1,11 1,12 1
P12 =59 G112+ 359 “gee1 =I5,

P2 = 3929111 + 97 (9120 — 3911,2) = Iy,

(3.6.4) P22 = 3920112 + 39729201 = T3,
-0 _ 1 11 112 _ 11
Q11 =59 9112+ 359 9221 =T,
g1z =g (g12,2 — 5922.1) + 5929222 = '3y,
g1 = %912911,2 + %922922,1 =T%,,
@2 = 9" (g12,2 — 2922.1) + 19?2 g202 =T3,,
[l
Note that

qi1 = P12, (21 = P22

Theorem 3.6.4. The Fundamental Theorem of surfaces in R>.

Suppose f: O — R3 is a parametrized surface, and g;;,l;; are the coefficients of
LII. Let P,Q be the smooth gl(3)-valued maps defined in terms of g;; and ;; by
(??). Then P,Q satisfy

(3.6.5) Py, = Qu, = [P,Q).
Conwversely, let O be an open subset of R?, (gi;), (¢ij) : O — gl(2) smooth maps such
that (gi;) is positive definite and (¢;;) is symmetric, and P,Q : U — g¢l(3) the maps

defined by (3.6.2). Suppose P,Q satisfies the compatibility equation (3.6.5). Let

(29,23) € O, py € R3, and u1,uz,us a basis of R® so that u; - uj = g;;(29,23) and

ui-ug =0 for 1 <i,5 < 2. Then there exists an open subset Og C O of (29, 29) and
a unique immersion f : Oy — R3 so that f maps Oy homeomorphically to f(Op)
such that

(1) the first and second fundamental forms of the embedded surface f(Op) are
given by (gij) and (¢;;) respectively,
(2) f(29,29) = po, and f.,(29,29) = u; fori=1,2.

Proof. We have proved the first half of the theorem, and it remains to prove the
second half. We assume that P, Q satisfy the compatibility condition (3.6.5). So
Frobenius Theorem ?? implies that the following system has a unique local solution

(v1,v2,v3)z, = (v1,v2,v3)P,
(3.6.6) (U1, v2,V3)z, = (v1,02,03)Q,
(v1,v9,v3) (29, 29) = (uy,us,u3).
Next we want to solve
Juy =01,
fuy = v2,
fa,23) = po.
The compatibility condition is (v1)g, = (v2)s,. But

3 3
(00)es = 4105, (V2)ay = D Djava.
j=1 j=1
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It follows from (3.6.2) that the second column of P is equal to the first column of
Q. So (v1)z, = (v2)4,, and hence there exists a unique f.

We will prove below that f is an immersion, v3 is perpendicular to the surface
follvsll =1, fa, - fo, = 9ij> and (v3)a, - fo, = —Lij, i.e., f is a surface in R? with

I= Zgijdxidwj> II = Zfijdfﬁidl‘j
ij ij
as its first and second fundamental forms. The first step is to prove that the 3 x 3
matrix function ® = (v; - v;) is equal to the matrix G defined by (3.6.2). To do
this, we compute the first derivative of ®. Since v1,va,vs satisfy (3.6.6), a direct
computation gives

(Vi *Vj)ay = Wi)ay - Vj + i (V)

= Zpkivk “Vj A+ PhjUk Vi = Zpkigjk + 9ikPkj
k k

= (GP)j; + (GP);; = (GP + (GP)");;.

Formula (3.6.2) implies that GP = G(G~'A4;) = A; and A; + A} = G,,. Hence
(GP)t + GP = G, and

D, = Gy,,.
A similar computation implies that
(I)mz = ze
But the initial value ®(2?,29) = G(29,29). So ® = G. In other words, we have
shown that
fx,ij = Gij» fxi'U3:O~
Thus

(1) fzy, [z, are linearly independent, i.e., f is an immersion,
(2) ws is the unit normal field to the surface f,
(3) the first fundamental form of f is >, gi;dz;dz;.

To compute the second fundamental form of f, we use (3.6.6) to compute
—(V3)z, - 05 = (g lrr + "2 la2)v1 - vj + (92001 + 9P a)vs - v,
= (9" 00 + 9" 12) g1 + (9201 + 97 12) g2
= l11(9" 915 + 9'%925) + L12(9* 915 + 9% 925)
= {11015 + £1202;.
So
_(U?))acl vy = b1, _(U?))ml “vg = L2
Similar computations imply that
—(V2), - vj = Loj.
This proves that ), y Lijdz;dx; is the second fundamental form of f. O
System (3.6.5) with P, Q defined by (3.6.2) is called the Gauss-Codazzi equation
for the surface f(O), which is a second order PDE with 9 equations for six functions

gi; and £;;. Equagtion (3.6.5) is too complicated to memorize. It is more useful
and simpler to just remember how to derive the Gauss-Codazzi equation.

It follows from (3.6.1), (3.6.2), and (3.6.3) that we have
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2 2
fmixl = ijzfzJ +£7,1N = nglij +£i1N7
j=1 j=1

2 2
friwa = Qja=ifa, + LN = Thfo + LN,

Jj=1 Jj=1

where p;; and ¢;; are defined in (3.6.2).
So we have

(3.6.7) fm1m7 = ngle + Fzzjfr2 + gijN7

Proposition 3.6.5. Let f : O — R3 be a local coordinate system of an embedded
surface M in R3, and a(t) = f(x1(t), z2(t)). Then « satisfies the geodesic equation
(??) if and only if &"(t) is normal to M at o(t) for all t.

Proof. Differentiate o’ to get o/ = Z?:l Jz: i So

2
" I, 1
o = E fxixjxixj + fmz‘rz

4,j=1

2
> TE feutial + LN + fo,1]
i,5,k=1
2

ij=1

3.7. The Gauss Theorem.

Equation (3.6.5) is the Gauss-Codazzi equation for M.

The Gaussian curvature K is defined to be the determinant of the shape operator
—dN, which depends on both the first and second fundamental forms of the surface.
In fact, by Proposition 77
 lyalyy — (3,

911922 — 9%2 .

We will show below that K can be computed in terms of g;; alone. Equate the 12
entry of equation (3.6.5) to get

K

3
(P12)ws — (@12)2y = D P1jdj2 — q1Dj2-
j=1

Recall that formula (3.6.4) gives {p;j,qi; | 1 < 4,5 < 2} in terms of the first
fundamental form I. We move terms involves p;;, ¢;; with 1 < 4,5 < 2 to one side
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to get

2
(3.7.1) (P12)es — (@12)ay — D P1j%2 — Q1jPj2 = P13Gs2 — q13Ps2-
=1

We claim that the right hand side of (3.7.1) is equal to
—911(511522 - @2) = —911(911922 - gfz)K
To prove this claim, use (3.6.2) to compute P, Q to get

P13 = — (9" 011 + 9"%12),  p3z = lra,
Q13 = — (9" 2 + "% l2), g2 = laa.
So we get

2

(3.7.2) (P12)as = (012)2, — D P1j2 — Q1553 = —9" (911922 — g12) K.
j=1

Hence we have proved the claim and also obtained a formula of K purely in terms
of g;; and their derivatives:

2
(P12)ay — (q12)2y — D51 P13 %52 — 415D53

K=—
911(911922 - 9%2)

This proves

Theorem 3.7.1. Gauss Theorem. The Gaussian curvature of a surface in R3
can be computed from the first fundamental form.

The equation (3.7.2), obtained by equating the 12-entry of (3.6.5), is the Gauss
equation.

A geometric quantity on an embedded surface M in R™ is called intrinsic if it
only depends on the first fundamental form I. Otherwise, the property is called
extrinsic, i.e., it depends on both I and II.

We have seen that the Gaussian curvature and geodesics are intrinsic quantities,
and the mean curvature is extrinsic.

If ¢ : My — M> is a diffeomorphism and f(x1,z2) is a local coordinates on My,
then ¢ o f(x1,x2) is a local coordinate system of Ms. The diffeomorphism ¢ is an
isometry if the first fundamental forms for M;, My are the same written in terms
of dx1,dxs. In particular,

(i) ¢ preserves anlges and arc length, i.e., the arc length of the curve ¢(«) is
the same as the curve a and the angle between the curves ¢(«) and ¢(3)
is the same as the angle between « and 3,

(ii) ¢ maps geodesics to geodesics.

Euclidean plane geometry studies the geometry of triangles. Note that triangles
can be viewed as a triangle in the plane with each side being a geodesic. So a
natural definition of a triangle on an embedded surface M is a piecewise smooth
curve with three geodesic sides and any two sides meet at an angle lie in (0, ).
One important problem in geometric theory of M is to understand the geometry
of triangles on M. For example, what is the sum of interior angles of a triangle on
an embedded surface M? This will be answered by the Gauss-Bonnet Theorem.
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Note that the first fundamental forms for the plane
f(@1,22) = (21, 22,0)

and the cylinder
h(z1,22) = (cosxy,sinxy, xo)

have the same and is equal to I = dz? + dz2, and both surfaces have constant zero
Gaussian curvature (cf. Examples ?? and ?7). We have also proved that geodesics
are determined by I alone. So the geometry of triangles on the cylinder is the same
as the geometry of triangles in the plane. For example, the sum of interior anlges
of a triangle on the plane (and hence on the cylinder) must be 7. In fact, let ¢
denote the map from (0, 27) x R to the cylinder minus the line (1,0, 22) defined by

¢(x1,x2,0) = (coszq,sinzy, z2).

Then ¢ is an isometry.

3.8. Gauss-Codazzi equation in orthogonal coordinates.

If the local coordinates x1,zo are orthogonal, i.e., g1o = 0, then the Gauss-
Codazzi equation (3.6.5) becomes much simplier. Instead of putting g;2 = 0 to
(3.6.5), we derive the Gauss-Codazzi equation directly using an o.n. moving frame.
We write

g1 =A%, gn=A43 g=0.

Let

_ I _ Jas
Ay’ Ay’

Then (eq, ez, e3) is an o.n. moving frame on M. Write

{(61762763)3?1 = (61762563)P3

€1 (&) €3 = N.

(e1,€2,€3)s, = (€1,62,€3)Q.
Since (eq, e, €3) is orthogonal, P, Q are skew-symmetric. Moreover,
Pij = (€j)ar “ €15 Gij = (€j)as " €i-
A direct computation gives

(e1)g, €2 = <f“31> N EN T
T Al )

Ay AA,
— (fxl i f332)$1 — fxl ) fx1x2
A A
_(%A%)Iz — _(Al)xg
A As Ay
Similar computation gives the coeflicients p;; and g;;:
0 (ij)xz _% 0 . (Aj)ml _%
~ 2 1 - 1 1
(3.8.1) P= _% 0o -4, Q= (Afx)fl 0 —ta
by 2P} 0 2] Lo 0

Ay Ao
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To get the Gauss-Codazzi equation of the surface parametrized by an orthogonal
coordinates we only need to compute the 21-th, 31-th, and 32-the entry of the
following equation

(P)xz - (Q)xl = [P’ Q]’

(AI)IQ (A2)zl _ ligben—032,
z A - Ar1Ax

and we obtain

(3.2 (%) (%T) = el | bl
2 Lag _ (A2)a, 512(A1)w2
(%), - (&), =P -

The first equation of (3.8.2) is called the Gauss equation. Note that the Gaussian
curvature is

li1loe — 03y

K =
(A1A2)?
So we have
(A1)z (A2)z
3.8.3 K= ( A22)w2+( A)w
(3.8.3) =— A, )

We have seen that the Gauss-Codazzi equation becomes much simpler in or-
thogonal coordinates. Can we always find local orthogonal coordinates on a surface
in R3? This question can be answered by the following theorem, which we state
without a proof.

Theorem 3.8.1. Suppose f: O — R3 be a surface, zg € O, and Y1,Y>: O — R3
smooth maps so that Y1(xg), Ya(xo) are linearly independent and tangent to M =
f(O) at f(xg). Then there exist open subset Oy of O containing xo, open subset
Oy of R%, and a diffeomorphism h : O1 — Qg so that (f o h)y, and (f o h),, are
parallel to Y1 0o h and Y3 o h.

The above theorem says that if we have two linearly independent vector fields
Y1,Y3 on a surface, then we can find a local coordinate system ¢(y1,y2) so that
@y, Py, are parallel to Y7, Y5 respectively.

Given an arbitrary local coordinate system f(z1,22) on M, we apply the Gram-
Schmidt process to fu,, fz, to construct smooth o.n. vector fields ey, es:
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By Theorem 3.8.1, there exists new local coordinate system f(y1,2) so that

€1 =

am
and 672 are parallel to e; and es. So the first fundamental form written in this
coordinate system has the form

911dy; + Goodys.
However, in general we can not find coordinate system f (y1,y2) so that e; and eq
are coordinate vector fields gTj; and g—yf; because if we can then the first fundamental

form of the surface is I = dy? + dy3, which implies that the Gaussian curvature of
the surface must be zero.



