LECTURE NOTES ON CURVES AND SURFACES IN R?
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1. Introduction

To study a collection of geometric objects, we often proceed as fol-
lows:

(1) Specify a group of “symmetries” that acts on objects, and define
two objects a, b to be equivalent if and only if b = g(a) for some
g in the symmetry group,

(2) Find a complete set of invariants and their relations. This
means that we want to associate to each object a a set of quan-
tities I(a) satisfying certain relations so that

(i) if a and b are equivalent, then I(a) = I(b),
(ii) given a set T satisfies the relations then there exists an
object a unique up to equivalence so that I(a) = Z.

One of the simplest examples is the study of triangles in R? with the
group of rigid motions as symmetry group. Recall that a rigid motion
is a rotation follows by a translation. It follows from plane geometry
that the length of three sides I(a) = {s1, S2, s3} of a triangle a forms
a complete set of invariants and they satisfy the relations (triangle
inequalities and length is positive):

S1+ S9 > S3, S9g+ 83> 581, S1+ S3> S, SZ‘>O, 1< <3,

In this series of lectures, we use differential calculus, linear algebra,
and differential equations to study curves and surfaces in R® with the
rigid motions as symmetry group. For example, for

e the study of curves in R?, the objects are immersed curves in
R2, and the curvature function of a curve is a complete set of
invariants,

e the study of curves in R3, the objects are immersed curves in R3,
and the curvature £ and torsion 7 of a curve form a complete
set of invariants with condition k£ > 0,

e the study of surfaces in R?, the objects are immersed surfaces
in R, and their first and second fundamental forms form a
complete set of local invariants and they must satisfy the Gauss-
Codazzi equations.

These invariants determine the local geometry of curves and surfaces
unique up to rigid motions. One goal of these lectures is to explain the
Fundamental theorems of curves and surfaces in R®. Another goal is to
demonstrate by examples how to construct soliton equations from nat-
ural geometric curve flows and from the Gauss-Codazzi equations for
surfaces whose numerical invariants satisfy certain natural conditions.
The examples we will give are:
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(1) the evolution of local invariants of the evolution of space curves
move in the direction of the binormal with curvature as its speed
is the non-linear Schrodinger equation,

(2) the Gauss-Codazzi equation for surfaces in R® with K = —1 is
the sine-Gordon equation,

(3) the Gauss-Codazzi equation for surfaces in R* admitting a con-
formal line of curvature coordinate system is a reduced 3-wave
equation.

2. Curves in R? and in R?

Let - denote the standard dot product in R", and |[v] = v v
the length of v € R™. In this section, a curve in R” means a smooth
map « : [a,b] — R™ so that o/(t) # 0 for all t € [a,b], i.e., @ is an
immersion. The arc length of « from ty € [a, b] to t is

S(t) = / |/ ]| dt.

Since & = || o/ || and o/(t) # 0 for all ¢ € [a, b], the function s : [a, b] —
0, 4] is a diffeomorphism, where ¢ is the arc length of . So we can
make a change of coordinate ¢t = t(s) (the inverse function of s = s(t)).

Moreover, by the chain rule we have

da
do_a _ _(t)
ds 4 la@) ]
ie., fl—‘;‘ is a unit vector tangent to a.
A curve « : [c1, 5] — R™ is said to be parametrized by its arc length
if ||&/(t)] =1 for all t € [c1,c2). The above discussion says that any

curve in R™ can be parametrized by its arc length.

2.1. Some results from ODE.

Proposition 2.1.1. Suppose ey, -+ , e, : [a,b] — R™ are smooth maps,
and {ei(t), - ,en(t)} is an orthonormal (o.n.) basis of R™ for all
t € [a,b]. Then

(1) there exists a matriz valued function A(t) = (a;;(t)) so that
211) Q) = 3 aslt)es 1)
j=1

(2) aij = 6;- c €.
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(3) aijj +aj; =0, i.e., A(t) is skew-symmetric

Proof. Since ey, --- , e, form an o.n. basis of R", €}(t) can be written
as a linear combination of e;(¢), -, e,(t). This proves (1). Dot (2.1.1)
with e; to get (2). Because e; - e; = d;5, the derivative of this equation
implies that ¢} - e; + ¢; - €; = 0, which proves (3). O

It follows from the definition of matrix multiplication that

L1
L2
('Ulav2a”' 7Un) : - Zxk‘vk‘v
- k
Tm
where vy, - - -, v, are column vectors. So we can rewrite (2.1.1) in matrix

form

g'(t) = g(t)At), where g(t) = (ex(t), -~ ,en(t)), A(t) = (ay(1)).

Note the i-th column of A gives the coefficient of of e, with respect to
the o.n. basis ey, - ,e,.

The following is a special case of the existence and uniqueness theo-
rem for solutions of ODE:

Theorem 2.1.2. (Existence and Uniqueness of ODE) Let I be an
interval of R, U an open subset of R, and F': I x U — R"™ a smooth
map. Then given ty € I and py € U, there exists § > 0 and a unique
smooth x : (ty — d,tg + 0) — U so that x is a solution of the following
initial value problem:

(212) {x’(t) = F(t, (1)),

z(to) = po

Let gl(n) denote the space of all n x n real matrices. An n xn matrix
C' is called orthogonal if C*C = 1. It follows from definition of matrix
product that we have

Proposition 2.1.3. The following statements are equivalent for a ma-
triz C € gl(n):
(1) C is orthogonal,

(2) the column vectors of C' are o.n.,
(3) the row vectors of C' are o.n..
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Proposition 2.1.4. Suppose A(t) = (a;;(t)) is skew symmetric for all
t. If C € gl(n) is an orthogonal matriz, ty € (a,b), and g : (a,b) —
gl(n) is the solution of

gt) =g(A®), g(to) =C,
then g(t) is orthogonal for allt € (a,b).

Proof. Set y = g'g. We compute the derivative ¢’ to get

Y =0"Y9+3d9d=(0)g+39d = (94)g+ g (gA) = Ay + yA.

Since the constant function y(¢) = I is a solution with initial data
y(to) =1, it follows from the uniquness of solutions of ODE (Theorem
2.1.2) that y(t) =1 for all t € (a,b). O

Exercise 2.1.5.

(1) For X, Y € gl(n), let (X,Y) = tr(X'Y). Show that ( ,) is an
inner product on gl(n), and gl(n) is isometric to the Euclidean
space R™ with the standard inner product.

(2) Given A € gl(n), prove that

converges uniformly on any finite interval [—r,r]. Hence y(¢)
is continuous. Prove also that y is differentiable and ¥ is the
solution of the initial value problem:

y'(t) = Ay(t), y(0) =1Id.
We will denote y(t) as e/

(3) Compute e for A = diag(ay,...,a,) and for A = (_01 (1])
(4) Suppose D is the diagonal matrix diag(dy,--- ,d,), g is an in-
vertible n x n matrix, and A = ¢gDg~'. Show that ¢ =

getPgL.
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2.2. Curves in R?.

Let a(t) = (z(t),y(t)) be a smooth curve parametrized by its arc
length. Then e;(t) = o/(t) = (2/(t),y'(t)) is a unit vector tangent
to a at «(t). Note that (—xq,z1) is perpendicular to (x1,z3). Let
ea(t) = (—y/'(t),2'(t)). Then e(t), es(t) form an o.n. basis of R?. Such
(e1(t),e2(t)) is called a o.n. moving frame along «. Since a 2 x 2
skew-symmetric matrix is of the form

()

It follows from Proposition 2.1.1 that there exists a smooth function
k(t) so that
0 —k
(e1,€2)" = (e1, e2) </.g 0 ) )

k=¢el-e,,

ey = keo,
r_
e, = —key,

The function & is called the curvature of the curve «.

In fact, we have

and

Example 2.2.1. A straight line can be parametrized as «(t) = po+tu,
where po € R? and u a constant unit vector in R?. Then e¢; = u
a constant, and €] = 0. Hence the curvature of a straight line is
identically 0. Conversely, if the curvature of a curve 3 parametrized
by arc length is identially zero, then 8 must be a straight line. To see
this, note first that ¢} = 3” = kes = 0. Hence e; is a constant vector,
say u. But (8(t) — tu)’ = e; —u = 0 implies that 3 — tu is a constant
Po- So [(t) = po + tu is a straight line. So the curvature of a plane
curve measures the deviation of the curve being a straight line.

Example 2.2.2. The circle of radius r centered at pq is

t ot
a(t) =po + (r cos —, 1 sin —) :
r r
Since o (t) = (—sin £, cos L) has length 1, ¢ is an arc length parameter.

A direct computation shows that the curvature is the constant function
1

-
The following Proposition says that the curvature is the instantanous

rate of change of the polar angle of tangent of the curve. So when £ is
large, the curve winds around faster.
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Proposition 2.2.3. Suppose a(t) = (z(t),y(t)
arc length, and 6(t) the angle from (1,0) to o/(

Proof. Since e; = o/ = (cosf(t),sinf(t)), ex(t)
A direct computation implies that k =€} - eo =

) is parametrized by its
t). Then 6'(t) = k(t).

= (—sinf(t),cosb(t)).
0'(t). =

Note that the tangent line to « at a(to) gives the best linear approx-
imation to a near a(ty). The best quadratic approximation of « is the
osculating circle. We explain this next.

Definition 2.2.4. The osculating circle at «a(tg) of a curve a is the
circle of radius r = m centered at a(to) + rea(to).

Proposition 2.2.5. Suppose a(t) = (x(t),y(t)) is a plane curve, and
t is the arc length parameter. Then the osculating circle C' at a(ty) is
the best second order approrimation of o mear ty.

,0), and

Proof. We may assume that to = 0, a(O) = (0,0), /(0) 1
1(0,1). So the

e2(0) = (0,1). Let r = ﬁ. Since €} = key, o”(0) =
degree 2 Taylor series of a(t) = (x(t),y(t)) at t =0 is

= (
1(0,1

(z(0) 4+ 2'(0)¢ + %az”(())t?, y(0) +y'(0)t + %y”(())ﬁ) (t ;—T)

The osculating circle at «(0) = (0,0) is the circle of radius r centered
at (0,0) +r(0,1) = (0,7). So

C(t)=(0,r)+r (sinf, _COSE)

T T

gives an arc length parameter of the osculating circle at «(0). It is easy
to check that the degree two Taylor series of C'(t) at t = 0 is the same
as the one for a(t). O

Theorem 2.2.6. (Fundamental Theorem of Curves in R?)

(1) Given a smooth function k : (a,b) — R, py € R?, ty € (a,b),
and uy,us a fived o.n. basis of R?, there exists a unique curve
a(t) defined in a small neighborhood of to so that t is an arc
length parameter, a(0) = po, o/(0) = uy, and k(t) is its curva-
ture function.

(2) Let a,& : (—8,0) — R? be smooth curves parametrized by arc
length. If a and & have the same curvature function, then there
exists a rigid motion T so that &(t) = T'(«(t)) for all t.
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Proof. (1) To construct the curve «, we need to solve

o =ey,
(2.2.1) ey = key,
e, = —key

with initial data «(0) = po, €1(0) = wuy, e2(0) = ug. Let F : (a,b) x
(R?)? — (R?)3 be the smooth map defined by
E(t,y0,y1,y2) = (y1, k()y2, —k(t)ys).

It follows from Theorem 2.1.2 that there exists a unique solution with

initial data (o, y1,¥2)(0) = (po, u1, uz). Since (2 _Ok) is skew-symmetric

and
0 —k
(ylayZ)/_(thW)(k, 0>,

it follows from Proposition 2.1.4 that y;(¢), y2(¢) form an o.n. basis for
each t.

(2) Let e; = o, ey the unit normal for a so that det(e;, es) = 1, and
é, = &, é; the unit normal for & so that det(é;, é3) = 1. By assumption
a and & have the same curvature function k, so both («, e, es) and
(@, €1, €9) satisfy the same differential equation

(2.2.2) Yo =y1, Yy = kya, Yy = —ky1.
Let h denote the constant rotation

h = (£1(0),(0))(e1(0), e2(0)) ",
and T the rigid motion
T(v) = a(0) — h((0)) + hv.

Set (t) = T(«(t)). Then B(0) = @(0) and ' = he;. Since h is a
rotation, hes is the unit normal of 5 and (hey, hey) is a local o.n. frame
along (. By definition of h, we have h(e;(0)) = €;(0) for i = 1,2. But

B’ = hei,

(her)' = h(e}) = h(kes) = kh(ez),

(h(eg) = h(ey) = h(—key) = —kh(ey).
So both a and 3 are solutions of the following initial value problem:

/

Yo = Y1,
yi = k’?JQ,
yé - _kylv

(0, y1,42)(0) = (&(0), €1(0), €2(0)).
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By the uniqueness of ODE, § = &, i.e., @ = T(«). O

Let o : [0, ¢] — R? be a smooth curve parametrized by its arc length,
and e; = o and e, the unit normal. Below we give three classical ways
to generate new curves from a:

(1) The involute of « starting at a(tg) is the curve
ﬁto(t) = a(t + to) - tel(t + to).

Note that if « is a simple close curve, then the involute of a at
a(tg) can be viewed as pulling the thread from a spool of the
shape of a from the point «(ty).
(2) The evolute of a curve « is the locus of the centers of osculating
circles of a, i.e., the evolute is
1

B(t) = a(t) + 70)

(3) The curve parallel to o with distance r is
a(t) + rea(t).

€9 (t)

Exercise 2.2.7.

(1) Recall that a map 7' : R — R" is a rigid motion if T is of
the form T'(x) = gz + b for some n x n orthogonal matrix g
and b € R". Prove that the set of all rigid motions of R" with
composition as multiplication is a group.

(2) Let a be a curve in R? parametrized by arc length, k its curva-
ture, and 7" a rigid motion. Prove that the curvature of 3 = To«
is also k.

(3) Suppose «(t) is not parametrized by arc length, write down the
curvature function in t variable.

(4) Prove that the curve parallel to o with distance r fails to be
an immersed curve at ty if and only if the radius of osculating
circle at a(to) is 2. Use 3D-XplorMath to visualize this.

(5) Use 3D-XplorMath Plane curve category to see the involutes of
a curve seem to be all parallel. Use mathematics to either prove
or disprove what you see.

(6) Write down the curve obtained by tracing a fixed point on a
circle of radius a when the circle is rolling along the z-axis with
a fixed speed b. This curve is called a cycloid.

(7) Show that the evolute of the cycloid is a translation of the same
cycloid.
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2.3. Space curves.

Let a(t) be a curve in R? parametrized by arc length. As for plane
curves, we need to construct a moving o.n. frame e;(¢), ea(t), e3(t) along
a such that e;(t) = o/(t). Since the normal space at every point is two
dimension, it is not clear which normal direction should be e;. There
are two natural ways to choose e;. The first is the classical Frenet
frame. Since e; = o’ has unit length,

(e1-e1) =2€]-e; =0.

So " = €] is perpendicular to e;. Assume that o/(t) never vanishes in
an interval (a,b). Let es(t) denote the unit direction along «”(t) and
k(t) the length of (t), i.e., €] = key. Let e3 = 1 X es. So {eq, ez, €3}
is an o.n. basis of R? for all . By Proposition 2.1.1, there exists a skew
symmetric 3 X 3 matrix valued map A(t) so that

(61, €2, 63)/ = (61, €2, 63)A-

Since 3 X 3 skew-symmetric matrix must be of the form

0 —fi —f
i 0 —fs
fo fs 0

and €] = key, the first column of A must be (0, k,0)" and there exists
7 so that

0 -k 0
(2.3.1) (e1,€9,e3) = (e1,e9,e3) | K 0 —7
0O 7 O

Note that 7 = €}-e3. The functions k and 7 are called the curvature and
torsion respectively, e5 the normal, es the binormal, and (eq, €9, €3) is
the Frenet frame along a. Equation (2.3.1) is called the Frenet-Serret
equation, which can also be written as

el = kea,
(2.3.2) eh, = —key + Tea,
es = —Tes.

Proposition 2.3.1. If the torsion of a is identically zero, then o must
lve in a plane.

Proof. Since 7 = 0, the third equation of (2.3.2) implies that e
—T7ey = 0. Hence e3 = b is a constant vector. The derivative of «(t) -
ise -b=e1-e3=0. S0 at) -b= ¢y a constant.

O < |l
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So torsion of a space curve measures the deviation of a being a plane
curve.

Theorem 2.3.2. (Fundamental Theorem of curves in R?)

(1) Given smooth functions k,7 : (a,b) — R so that k(t) > 0,
to € (a,b), po € R® and (uy,us,u3) a fizred o.n. basis of R3,
there exists & > 0 and a unique curve « : (tg — 0,tg + ) — R3
parametrized by arc length such that a(0) = po, and (uy, ug, ug)
1s the Frenet frame of a at t = ty.

(2) Suppose a,a : (a,b) — R are curves parametrized by arc
length, and o, & have the same curvature function k and tor-
sion function 7. Then there exists a rigid motion T so that
a="T(a).

Proof. This theorem can be proved in exactly the same way as Theo-
rem 2.2.6 by applying the existence and uniqueness Theorem 2.1.2 of
solution of ODE to F : (a,b) x (R?)3 — (R3)? defined by

F(t, 9o, y1,92) = (Y1, k()y2, —k()y1 + 7(t)yz, —7(t)ya2).
U

Next we describe parallel frames. Let (e, &, &) be a smooth o.n.
frame along « such that e; = /. Then by Proposition 2.1.1, there exist
three smooth functions fi, fs, f3 so that

0 —fi —f
(e1,&,&) = (e1,&1,&) [ L 0 —fs
fo fs 0

We want to change the o.n. normal frame (£, &) to (vq, v2) so that the
23 entry of the coefficient matrix of (e1,vq,v2)" is zero. To do this, we
rotate the normal frame & (), & () by an angle (5(1):

{m (t) = cos B(t)&: + sin B(1)&,
va(t) = —sin B(¢)&1 + cos B(1)&e.
We want to choose (3 so that v} - v = 0. But
vy vy = [(—sin B § +cos B &) - (—sinf & + cos B &)
+ (cos B &) +sin B &) - (—sin 3 & + cos B &)
=+ (cos® B & & —sin® B & - &)
=0+ fs
So if we choose [((t) so that
(2.3.3) g =,
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then the new o.n. frame (e, vy, vy) satisfies

0 —k —ko
(234) (61,1}1,1}2>/ = (61,U1,U2) kl 0 0 y
ko 0O 0
where
(2.3.5)

ki =é-vy=¢€)-(cosf & +sinf &) = ficos B+ fosinf3,
ko =€) -vy = —f1sinf + fycosf3.

The o.n. frame (e, vq,v) is called a parallel frame along .. The reason
for the name parallel is because the normal component of the derivative
of the normal vector field v; is zero. The functions ki, ko are called the
prinicipal curvatures along vy, ve respectively. However, the choice of
parallel frame is not unique because (3 only need to satisfy (2.3.3), so
we can replace 3 by [ plus a constant 6y. If we rotate (v1,v3) by a
constant rotation 6y to (01,0s), then (eq, 01, 7,) is again parallel. But

the principal curvature k; along v, is
ky = e -0y = €} - (cosbyuy + sin Oyvs) = cos Opky + sin Oyks.
Similar computation gives
l~€2 = —sinfpky + cos Oyks.
Note that ) .
o = €] = kyvy + kovy = k101 + koo,
So we have
Proposition 2.3.3. Let o be a curve in R® parametrized by arc length,

(v1,v2) a parallel normal frame along o, and ki, ke principal curvature
with respect to vy, vy respectively. Then o = kv + kavs.

Corollary 2.3.4. Let (v1,v3) be a parallel normal frame for o, ki, ko
the corresponding principal curvatures, (eq, es, e3) the Frenet frame, and
k,T the curvature and torsion of a. Then
(1) there exists 3(t) so that vy = cos 3 ea+sin 3 e3, vo = —sin 3 ea+
cos 3 ez, and 3 = —7,
(2) k1 = kcosf3, ko = —ksin 5.

Proof. Use & = ey, & = e3 in the computation before Proposition 2.3.3.
Since f; = k, fo = 0 and f3 = 7, equations (2.3.3) and (2.3.5) imply
the Corollary. O

Exercise 2.3.5.
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(1) Find all curves in R? with constant curvature and torsion.

(2) Find all curves in R?® with constant principal curvatures.

(3) Let a be a curve in R™ parametrized by arc length. Prove that
for generic set of curves «, there exists an o.n. moving frame
(e1,+-- ,ey,) such that

(ela"' 7€n)/:(617"' 76n)P>

where

0 —ki O

ki 0  —ko

p_ 0 ko 0 —ks
0 _k’nfl

0 kn_1 0
for some smooth functions kq,--- , k,_1. (So the coefficient ma-
trix for (e1,--- ,e,)" is tri-diangle). This is an analogue of the

Frenet frame for curves in R”.

(4) Formulate and prove the fundamental theorem for curves in R”
with the frame given in the above exercise.

(5) Let a be a curve in R™ parametrized by arc length.

(i) Prove that there exists a 0.n. moving frame (e1, vy, ,U,_1)
such that
(617 U1, 7Un71)/ = (617U17 e 7Un71)P7
where
0~k —ky o ko
ky 0o ...
P=1 ko 0
kn—1 O
for some smooth function k1, --- , k,_1. This is the parallel

frame for curves in R".

(ii) Formulate and prove the fundamental theorem for curves
in R™ with the parallel frame.

(iii) Find all curves in R™ with constant principal curvatures.
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2.4. Frobenius Theorem.

Let O be an open subset of R?, and A, B; O x R — R smooth maps.
Consider the following first order PDE system for v : O — R:
{a— = Az, y,u(z,y)),

(2.4.1) 00

oy = B(:E,y,u(x,y)).

The Frobenius Theorem gives a necessary and sufficient condition for
the first order PDE system (2.4.1) to be solvable. We need to use this
theorem extensively in the study of curve evolutions and of surfaces in
R3. We will see from the proof of this theorem that although we are
dealing with PDEs, the algorithm to construct solutions of this PDE is
to solve one ODE system in z variable and the solve a family of ODE
systems in y variables. The condition given in the Frobenius Theorem
guarantees that this process produces a solution of the first order PDE.

If the system (2.4.1) admits a smooth solution u(zx, y), then the mixed
derivatives Uz, = Uy, i.€.,

Usy = (us)y = (A(z,y, u(z,y))y = 4y + Ayuy = Ay + A, B
= (uy): = (B(z,y,u(z,y))s = By + Byu, = B, + B,A.
So A, B must satisfy the compatibility condition:
A, +A,B=B,+ B,A.

Moreover, this is also a sufficient condition for system (2.4.1) to be
solvable:

Theorem 2.4.1. (Frobenius Theorem) Let U; C R? and Uy, C R”
be open subsets, A = (Ay,...,A,),B = (By,...,B,) : Uy x Uy — R"
smooth maps, (xg,yo) € Uz, and py € Uy. Then the following first order
system

Qu — Az, y, u(z,y)),

(2.4.2) g = B(z,y,u(z,y)),
u(o, Yo) = Ppo,
has a smooth solution for w in a neighborhood of (xo,vyo) if and only if
=~ 0A; “~ 0B;
2.4.3 A; —B; = (B))s —A;, 1<i<n.
243)  (Ad+ Y Gl = (B + Do i<n

Proof. If w is a smooth solution of (2.4.2), then (u,), = (u,), implies
that the compatibility condition (2.4.3) must hold.

Conversely, assume A, B satisfy (2.4.3), we want to solve (2.4.2). We
proceed as follows: The existence and uniqueness of solutions of ODE,
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Theorem 2.1.2; implies that there exist § > 0 and a : (xg—0,20+0) —
U, satisfying

(2.4.4) {3—3 = Az, yo, a(x)),
a(zo) = po.

For each « € (zg — 0,20 + 6), let 3%(y) denote the unique solution of
W _ p .
(2.4.5) { o = By, 6°(y)),

B (yo) = a(x).
Set u(z,y) = *(y). By construction, u satisfies the second equation
of (2.4.2) and u(zg,yo) = po. It remains to prove u satisfies the first
equation of (2.4.2). To prove this, we compute the y-derivative of
2(z,y) = uz — Az, y,u(z,y)) to get
zy = (s — A(@, 4, 1))y = sy — Ay — Auuy = (uy), — (4y + AuB)

= (B(z,y,u)), — (A, + A,B) = B, + Byu, — (A, + A,B)

= B, + Byu, — (B + B,A) = By(u, — A) = Bu(z,y,u(z,y))z.
This proves z is a solution of the following differential equation:

(2.4.6) zy(x,y) = Bu(z,y,2)z(z, y).
But

2(z,90) = ua(z, 90) — Az, yo, u(x,90)) = o'(x) — A=, yo, a()) = 0.

Since the constant function zero is also a solution of (2.4.6) with 0
initial data, by the uniqueness of solutions of ODE (Theorem 2.1.2) we
have z = 0, i.e., u satisfies the second equation of (2.4.2). O

Remark The proof of Theorem 2.4.1 gives an algorithm to construct
numerical solution of (2.4.2). The algorithm is as follows: First solve
the ODE (2.4.4) on the horizontal line y = yy by a numerical method
(for example Runge-Kutta) to get u(xy, yo) for xp = x¢ + ke where € is
the step size in the numerical method. Then we solve the ODE system
(2.4.5) on the vertical line x = z,, for each n to get the value u(zp, ym).

Corollary 2.4.2. Let Uy be an open subset of R?, (xg,y0) € Uy, C' €
gl(n), and P,Q : Uy — gl(n) smooth maps. Then the following initial
value problem

gz = gP,
g(l‘o;yo) =C
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has a gl(n)-valued smooth solution g defined in a neighborhood of (xq, yo)
if and only if

(2.4.8) P,—Q.,=1[P,Q]=PQ—-QP.

Proof. This Corollary follows from Theorem 2.4.1 with A(x,y,u) =
uP(z,y) and B(z,y,u) = u@Q(z,y). We can also compute the mixed
derivatives directly as follows:

(92)y = (9P)y = g, P + gP, = gQP + gP, = g(QP + P,),

So the compatibility condition is
QP + P, = PQ + Qy,
which is (2.4.8). O

2.5. Smoke-ring equation and the non-linear Schrodinger equa-
tion.

In 1906, a graduate student of Levi-Civita, da Rios, wrote a master
degree thesis, in which he modeled the movement of a thin vortex by
the motion of a curve propagating in R? according to:

(2.5.1) Ve = Vo X Yo

It is called the vortex filament equation or smoke ring equation. This
equation is viewed as a dynamical system on the space of curves in R3.

Proposition 2.5.1. If y(z,t) is a solution of the smoke ring equation
(2.5.1) and ||v.(z,0)|| = 1 for all x, then ||v.(z,t)|| = 1 for all (z,t).
In other words, if ¥(-,0) is parametrized by arc length, then so is (-, )
for all t.

So for a solution v of (2.5.1), we may assume that (-, ) is parametrized
by arc length for all ¢. Next we explain the geometric meaning of the
evolution equation (2.5.1) on the space of curves in R3. Let (eq, g, €3)(+, t)
denote the Frenet frame of the curve (-, t). Since v, = e; and 7, =
(e1): = kes, the curve flow (2.5.1) becomes

v = kep X es = kes.

In other words, the curve flow (2.5.1) moves in the direction of binormal
with curvature as its speed. If we use a parallel frame (e, vy, vs), then
by Corollary 2.3.4

kes = k(sin fvy + cos fuy) = —kavy + k1vs.



LECTURE NOTES ON CURVES AND SURFACES IN R? 17

So the curve flow (2.5.1) becomes

(252) Y& = —k2v1 -+ ]€1U2.

By Proposition 2.3.3, o” = kjv; + kovg. So the above equation can be
viewed as

(2.5.3) e = Ji (") = Ji(kyvy + kovo),

where J; is the rotation of 7 on the normal plane at a(t). Note that
parallel frame (vq,vy) is not unique. Since o’ = kyv; + kovy and the
rotation of 7 in the normal plane is independent of the choice of the
parallel frame, the right hand side of equation (2.5.3) is independent
of the choice of parallel frame.

Next we want to derive the evolution equation of principal curvatures
for (-, ) for a solution of the smoke-ring equation. We will show that
they evolve according to the non-linear Schrédinger equation (NLS),
which is the equation models the motion of wave envelope travelling in
an optic fiber:

1

The NLS is one of the model soliton equations. In particular, the
Cauchy problem with either rapidly decaying initial data or periodic
data have long time existence, and there are infinitely many explicit
soliton solutions.

In 1970’s, Hasimoto showed that if v is a solution of the smoke-ring
equation (2.5.1), then ¢ = kexp([ 7dx) is a solution of the NLS. We
explain the equivalence between the smok-ring equation and the NLS
below.

Suppose 7 is a solution of (2.5.1). Choose a parallel frame

(617 V1, UQ)('v t)

for each curve (-, t). Let ki(-,t) and ks(+,t) denote the principal cur-
vatures of y(-, ) along vy (-, t) and vy(-, t) respectively. So we have

0 —k —k
(255) (61,U1,U2)x = (61,1}1,1)2) ]Cl 0 0
ky 0 0
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We want to compute the evolution of (ey, vy, v), i.e., (e1,v1,v9);. We
first compute

(e1)e = (1) = (”Yt) = (—kav1 + k1v2),
—(ka)2v1 — ko(v1)z + (k1)2v2 + k1(ve)z,  by(2.5.5)
= —(k2)ov (—klel) + (k1)2v2 + ki (—kaer)
—(k2)ov1 + (k1)zv
Since (eq, vy, v3) is o.n., by Proposition 2.1.1 there exists a function u
so that

0 (k2>:v _(kl)x
(elavlva)t = (617U17U2) _(kQ):E 0 —Uu 5

or equivalently,
(e1)e = —(k2)ov1 + (k1)ov2,
(v1)r = (k2)ze1 + uvs,
(v2)y = —(k1)z€1 — uvy.
We claim that
= —5 (B + R
To prove this, we compute
(Ul)zt "V = (—k1€1)t "V = _kl(el)t )
= —k1(—(k2)ev1 + (k1)ov2) - v2a = —ki(k1)az,
= (V1)tz - V2 = ((k2)z€1 + Uv2), - V2 = (kQ)a:(61>:5 T U2+ Uy
= (ko)z(k1v1 + kovg) - vg + uy = (ko)zko + uy.

This proves the claim. Hence
1
u(x,t) = —§(k% + k3) 4 c(t)

for some smooth function ¢(t). Remember that for each fixed ¢, we can
rotate (v1,v2)(+,t) by a constant angle 6(t) to another parallel normal
frame (01, 09) of y(+, 1), i.e.,

01(z,t) = cos O(t)vy(x,t) + sin O(t)ve(z, t),
Ug(x,t) = —sinO(t)vy (z, t) + cos O(t)va(x, t).
A direct computation shows that

do 1
U= (1) Uy = u+ i —g(k% +k3) +c(t) + 0'(t).



LECTURE NOTES ON CURVES AND SURFACES IN R? 19

If we choose 6 so that §' = —c, then the new parallel frame satisfies
0 () (i)
(617{]1762)1& = (61,?71,172) _(kQ)m 0 klng

(%l)x _];%2& 0

So we have proved the first part of the following Theorem:

Theorem 2.5.2. Suppose v(x,t) is a solution of the smoke ring equa-
tion (2.5.1) and ||v.(x,0)|| =1 for all x. Then

(1) there exists a parallel normal frame (vi,vq)(-,t) for each curve
(-, t) so that

;

0 —k —k
gz = ¢ kl 0 0
ky 0 0
2.5.6
(2.5.6) 0 (k) —(ki).
ge=4g _(kZ)x 0 # 5

\ 2

where g = (e1,v1,v2) and ki(-,t) and ko(-,t) are the principal
curvatures of (-, t) with respect to vi(+,t),vs(+,t) respectively,
(2) q = k1 +iky is a soluton of the NLS (2.5.4).

Proof. We have proved (1). For (2), we use (2.5.6) to compute the
evolution of (k1), and (ko);:

(k1)e = ((€1)z - v1)e = (€1)at - v1 + (€1) - (V1)
= (€1)tz - V1 + (k1v1 + kovo) - ((k:g)me1 — (M) UQ)

2
ko (k2 + k2
= <_(k2>zvl + (kl)xv2)gc Svp — %
ko (k2 + k2
:_(kQ)zz_ 2( 12+ 2)'

Similar computation gives

2 2
(ka)e = (k). + 2 ERD)

Let ¢ = k1 + iky. Then we have

2
. q
qt = Z(qu + % q)'
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The converse of Theorem 2.5.2 is also true. Given a solution ¢ =
k1 + iks of the NLS (2.5.4), we need to first solve the first order PDE
system (2.5.6) to get (e1,v1,vq), then solve another first order PDE
System

(2.5.7) {%‘ -

Ve = —kov1 + kyva.

Then ~(x, t) satisfies the smok-ring equation (2.5.1). Now we are ready
to prove the converse of Theorem 2.5.2. Let ¢ = k1 +iky be a solution of
NLS. To construct a solution y(z, t) of the smoke ring equation (2.5.1),
we need to solve two first order PDE systems (2.5.6) and (2.5.7). Sys-
tem (2.5.6) is of the form (2.4.7). By Corollary 2.4.2, the compatibility
condition is (2.4.8), i.e.,

where
0 —kl —]{32 0 (kQ)J»‘ _gklgﬂﬂ
P=(t 0o 0] Q={-t) o HH

Since P, () are skew-symmetric,
[P,Q' = (PQ —QP)' = (Q'P' = P'Q") = (QP — PQ) = —[P, Q).

Hence [P, Q)] is is skew-symmetric. So we only need to check the 21,
31 and 32 entries of (2.5.8). A direct computation shows that (2.5.8)
holds if and only if

(k)e + (kp)gq = —22LHH)
(o) — (ky) gy =SR]

which is the NLS equation for ¢ = k1 +iks. So by Corollary 2.4.2, given

a constant orthogonal matrix (ul, u3, u3), there exists a unique solution

g = (e1,v1,v9) for system (2.5.6) with initial data g(0) = (uf, u3, u3).
To construct the solution ~ for the smoke ring equation, we need to
solve (2.5.7). The compatibility condition for (2.5.7) is given by 7,; =

Vtz, Which is

(€1)r = (—kovy + k1v9),.
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This holds because (e1, vy, v9) satisfies (2.5.6). We carry out this direct
computation:

(e1)r = —(k2)av1 + (K1)av2,
(—hov1 + k1v2), = —(K2)2v1 — ko (v1)2 + (F1)ev2 + ki(v2)e
—(k2)2v1 + kokrer + (k1)zv2 — Ky (kaer)

9)2V1 + (k1)2V2

=—(k
In other word, we have proved

Theorem 2.5.3. Let ¢ = ky + iky be a solution of NLS, py € R3, and
(w1, us,u3) a constant orthogonal matriz. Then there exist a solution
of the smoke ring equation and a parallel frame (e, vy, v2)(+, t) for y(-,t)
so that ky(-,t), ka(-,t) are the principal curvatures along vy(-,t),ve(-, 1)
respectively, v(0,0) = po, and (e1,v1,v2)(0,0) = (ug, us, uz).

Note that given a solution ¢ = ki +iky of NLS, the proof of Theroem
2.5.3 gives an algorithm to construct numerical solution of the smoke-
ring equation.
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3. Surfaces in R3

3.1. Some linear algebra.

Let V' be a vector space, and ( ,) an inner product on V. A linear
map T : V — V is self-adjoint if

(A(Ul),vg) = (Ul,A(’UQ)) W V1,V € V.
The following is the Spectral Theorem for self-adjoint operators:

Theorem 3.1.1. Suppose V' is an n-dimensional vector space equipped
with an inner product (,). If T : V — V is a linear self-adjoint opera-
tor, then

(1) eigenvalues of T are real,

(2) there is an orthonormal basis vy, - - ,v, of V that are eigenvec-
tors of T, i.e., T'(v;) = N for 1 <i <n.

A bilinear functional b: V x V — R is symmetric if
b(v,w) = b(v,w) for all v,w e V.
A symmetric bilinear form b is positive definite if b(v,v) > 0 for all
non-zero v € V.

We associate to each self-adjoint linear map 7" on V' a symmetric
bilinear functional:

Theorem 3.1.2. Let T : 'V — V be a self-adjoint linear map, and
b:V xV — R the map defined by

b(Ul, UQ) = (T(Ul), UQ).
Then
(1) b is a symmetric bilinear form on 'V,

(2) all eigenvalues of T are positive if and only if b is positive defi-
nite.

Given a linear map T': V — V and a basis vy, -+ ,v, of T, we can
associate to T' a matrix A so that T is represented by the multiplication
of A. This is because each T'(v;) can be written as a linear combination

of the basis:
T(UZ> = Z Q;;V;.
J
Write v = > x;v;, and T'(v) = >, y;0;. A direct computation gives
y = Az, where A = (a), v = (z1,---,z,)", and y = (y1, -+ ,yn)".
In other words, after choosing a basis of V', the operator T looks like
the map = — Az. We call A the matriz of T associated to the basis
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vy, ,v,. If we change basis, the corresponding matrix of T° change
by a conjugation:

Proposition 3.1.3. Let T : V — V be a linear map, and A and B the
matrices of T associated to bases {vy,--- v} and {uy, -+ ,u,} of V
respectively. Write u; =, g;iv;. Then B = g tAg, where g = (g;;).

Below we list some properties of determinants:
det(AB) = det(A) det(B),
det(A") = det(A),
det(gAg™") = det(A).

Let A denote the matrix associated to the linear operator T': V. — V
with respect to the basis vy, -+ ,v,. Define

tr(7) = tr(A), det(7) = det(A),
where A is the matrix of T" associated to the basis vy, -+ ,v,. Since
tr(gAg™") = tr(A), det(gAg™") = det(A),
tr(7") and det(T) are independent of the choice of basis. Moreover, if

T has an eignbasis with eigenvalues Ay, --- , \,, then
(T)=> "N,  det(T) =[]\
j=1 Jj=1
Let vy,--- ,v, beabasisof V, b:V xV — R a symmetric bilinear

form, and b;; = b(v;, v;). Given & = Y x;v; and n = >, y;v;, we have

b(&n) =) by = X'BY,
ij

where X' = (z1,...,2,), Y = (y1,...,yn), and B = (b;;). We call
B = (b;;) the matrix associated to b with respect to basis vy, - - , v,.

Proposition 3.1.4. Let (V,(,)) be an inner product space, T : V — V
a self-adjoint operator, b(X,Y) = (T(X),Y) the symmetric bilinear
form associated to T', and A = (a;;), B = (b;;) the matrices of T and b

associated to basis vy, - - , v, respectively. Let g;; = (vi,v), G = (gi5),
and G=' = (g") the inverse of G. Then

(1) B = A'G,

(2) A=G1B,

(3) det(A) = G tr(A) = X2, ; bijg”-
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Proof. Compute directly to get
bij = (T(v:),v;) = (O arivi, vj) = Y _ arig; = (A'G)y;.
k k

This proves (1). Statement (2) and (3) are consequences of (1). O

Suppose b : V x V — R is the symmetric bilinear form associated to
the self-adjoint operator T': V — V', and vy, - ,v, are orthonormal
eigenbasis of T' with eigenvalues A, --- , \,. Then the diagonal matrix
diag(A1, - -+, A,) is the matrix associated to both 7" and b with respect

to the basis vy, -+ ,v,. Moreover, given v € V, write v = Y1 | z;v;,
then

b(v,v) =0 (i 05, Zn:a:jvj> = (i AiZiv;, ixjvj) = i N2
i=1 j=1 i=1 j=1 i=1

In other words, the quadratic form Q(v) = b(v,v) associated to b is
diagonalized. We also see that the maximum (minimum resp.) of b(v, v)
taken among all ||v]| = 1 is the largest (smallest resp.) eigenvalue of T'.

Tensor algebra

Let V be a finite dimensional vector space, and the dual V* =
L(V,R) the space of all linear functional from V' to R. Note that
V' is naturally isomorphic to V** = (V*)* = L(V* R) via the map

o)) =L(v), veV, LeV"

The tensor product Vi* @ - - - V;* is the vector space of all multilinear

functionals b : V4 x --- x Vi, — R, and the tensor product

TEHV) =@V @™V
is the space of all multilinear functionals from V x---V xV* x ... x V*
to R (here we use k copies of V' and m copies of V*).

Given fl < V;* and flqu < V;+k, let f1 Q- fk & lfk+1 K& karm
be the element in V* @ V' ® V11 ® -+ ® Vipy, defined by

(i@ @ fr®@&s1 @ @ &gm) (U1, -+, Uk, Ppy1, -+, Pt
= fl(ul) T fk(uk)hk+1(§k+1) T hk+m(§k+m)
for u; € V; and hyys € Vi1,

Proposition 3.1.5. Let vy, --- ,v, be a basis of V, and l1,--- , £, € V*
the dual basis, i.e., (;(v;) = ;5. Let b : V xV — R be a bilinear
functional, and b;; = b(v;,v;). Then

b= by li®L;
]
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Let L(V7, V3) denote the space of all linear maps from V; to V;. Given
¢ € V¥ and v € Vs, the tensor product ¢ ® v can be identified as the
linear map from V; to V5 defined by u +— ¢(u)v. It is easy to check that

L(Vi, Vo) =V @ Vi,
In fact,

Proposition 3.1.6. Let {vy, -+ ,v,} and {wq,--- ,wy,} be basis of V3
and Vo respectively, and {y,--- ¢, the dual basis of Vi*. Suppose T :

Vi — Va is a linear map, and T'(v;) = 377, ajiw; for 1 <i <n. Then

T = Z(Iji £7,®’w]
]
Corollary 3.1.7. Suppose {vy, - ,v,} is a basis of V and {ly,--- ,{,}
is the dual basis of V*. Then the identity map Id =377 {; ® e;.

A multilinear functional u € @*(V*) is called alternating if

u(&rry, 5 &rry) = sen (T)u(€e, -+ &)

for all &,--- , & € V, where 7 a permutation of {1,---  k} and sgn(7)
is the sign of 7.

For 6,60, € V*, let 6; A6y denote the bilinear functional on V' defined
by

(01 A 02)(&1,62) = 01(£1)02(82) — 02(61)01(S2)-

By definition, 6, A0, is alternating. So #, A0, is the anti-symmetrization
of 91 X 92.

Let AF(V*) denote the space of all alternating functionals in ®*(V*).
It follows from definitions that we have

Proposition 3.1.8. The following are true:

(1) If 0 € V*, then O A G = 0.
(2) [f01,92 € V*7 then 8, N0y = —69 N 6.
(3) If by,--- 0, is a basis of V*, then

{0, ANl [ 1<idy < <ip<n}

is a basis of AF(V*). In particular, dim(A"(V*)) = 1 and
dim(AF(V*) =0 if k > n.
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3.2. Embedded surfaces in R3.

Let O be an open subset of R2. A smooth map f : O — R3 is called
an immersion if f, (p), fz,(p) are linearly independent for all p € O.

Let M be a subset of R3. A subset U of M is open in the induced
topology if there exists an open subset Uy of R™ so that U = Uy N M.

Definition 3.2.1. A subset M of R3, equipped with the induced
topology, is called an embedded surface if there exist an open cover
{Us | @ € I} of M and a collection of homeomorphisms ¢, : O, — U,
from open subset O, of R? onto U, such that
(1) ¢ : Of — U, C R3 is an immersion,
(2) ¢5'ba : 0o (UaNUs) — ¢ (UaNUpg) is a smooth diffomorphism
for any o, 3 € I.

The collection A = {¢, : Op — U, | @ € I} is called an atlas of M.
A homeomorphism ¢ : O — U C M is said to be compatible to A if

¢tog o (UNU,) — ¢, (UNUa)

is a diffeomorphism for all &« € I. Such ¢ is called a local coordinate
system or a local chart on M.

Example 3.2.2. Examples of embedded surfaces in R?

(1) Graph.
Let O be an open subset of R?, and v : © — R a smooth
proper map. Here a map is proper if the preimage of any com-
pact subset is compact. The graph

M = {($1,$2,U<x1,$2)) | T1,T2 € O}

is an embedded surface in R? with one chart defined by ¢(x1, z5) =
(xla T2, u(xh $2))
(2) Surface of revolution.
Let a(s) = (y(s), z(s)) : (a,b) — R? be the parametrization
of a smooth curve C' in the yz-plane, and M the set obtained
by rotating the curve C' along the y-axis, i.e.,

M = {(z(s) cost,y(s), z(s)sint) | s € (a,b),t € [0, 27]}.

It is easy to check that M is an embedded surface in R? (we
need two charts to cover M).

(3) Let O be an open subset of R?, and f : O — R3 be a smooth
map such that f,,, f., are linearly independent at every point
of O and f is a homeomorphism from O to f(O), where f(O)



LECTURE NOTES ON CURVES AND SURFACES IN R? 27

is equipped with the induced topology. Then M = f(O) is an
embedded surface of R?.

(4) If M is an embedded surface of R? and ¢,, : O, — U, is a local
coordinate system on M, then U, is also an embedded surface
in R3.

The following Proposition is a consequence of the Implicit Function
Theorem:

Proposition 3.2.3. Let f : R® — R be a smooth function. If c € R
such that for all p € f~*(c) the gradient

VI(p) = (fa, (D), f22 (D), fus(P)) # O,
then M = f=*(c) is an embedded surface.
Applying the above Proposition to the function
f(z) = a12? + ayr; + asxs,
we see that the spheres, ellipsoids, hyperbolids are embedded surfaces.
Apply to
f(ilfl,.fl?z,flfg) = .CL"% + x%

to see that the cylinder is an embedded surface.

Definition 3.2.4.

(1) Let M be an embedded surface in R®. A map «a : (a,b) — M
is called a smooth curve if m; 0 v : (a,b) — R is smooth for all
1 < i < 3, where m; : R® — R is the projection of R? to the i-th
component.

(2) Let M and N be embedded surfaces in R3. A map f: M — N
is smooth if whenever « is a smooth curve on M implies that
f oa is a smooth curve on N.

Tangent plane

Let M be an embedded surface in R3, and py € M. If o : (—=4,6) —
M is a smooth curve with a(0) = pg, then « can be viewed as a map
from (—4,d) to R3. So we can compute o’(0) as in calculus. The space

TM,, ={a/(0) | a: (—=8,0) — M is smooth with «(0) = po}
is a vector space, and is called the tangent plane of M at py.

It f:0O — U C M is a local coordinate system of M, then
J2:(@), [z, (q) spans T My and %(q) is a unit vector normal
to TMf(q).
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The differential of a smooth map

Suppose M and N are two embedded surfaces in R?, and f : M — N
is a smooth map. The differential of f at p, df,, is the linear map from
TM, to TNy, defined by

dfy(c/(0)) = (f © @)'(0),

where a : (—0,9) — M is a smooth curve on M with «(0) = p. It
follows from the Chain rule that df, is well-defined, i.e., if «, 3 are
two curves on M so that «(0) = 3(0) = p and &/(0) = (0), then

(foa)(0)=(f<pB)(0).
Smooth vector fields

Let U be an open subset of M. A map £ : U — R? is called a smooth
vector field of M defined on M if

(1) &(p) € TM, for each p € U,
(2) given any local coordinate system ¢, : O, — U, of M there
exist smooth function &1, & on ¢ (U NU,) so that

§(f(0) = §1(0)(Pa)2: (@) + E2(q0)(Pa) 2y ()
for all ¢ € U NU,.

We will sometimes write a shorthand for ¢ in local coordinate system
$a by

§= 51(¢a)z1 + 62(92504)962-

If f: O — U C M is a local coordinate system, then we often let
9 to denote the vector field f,, o f71, i.e.,

ox;
0
82%’

Then the above vector field ¢ can be written as 518%1 + 528%2.

() == fo,(F (D))

Smooth differential 1-forms

Let f: O — U C M be a local coordinate system on the embedded
surface M of R®. Let (dx),, (dzs), denote the base of TM; dual to
the base f,,(p), fz,(p) of TM,, ie., dz;(fs;) = 0i5. Let (dxy A dxs), =
(dwl)p N (dmZ)p-

A smooth differential 1-form 6 on an open subset U of M is an assign-
ment 0(p) € T M for each p € U satisfying the following condition:
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given any local coordinate system ¢, : O, — U, C M, there exist
smooth Ay, Ay : o1 (UNU,) — R so that

Orq) = A1(q)(dr1) pq) + A2(q)(d2) 5(q)

for all ¢ € ¢, (U NU,). We often write the above equation in local
coordinate system ¢, as

0 = Aldﬂfl + AQdCCQ.

If h: M — R is a smooth map, then dh, : M, — TR, = R. So
we can identify dh, € TM, and dh as a smooth differential 1-form.

Differential 2-forms
A smooth differential 2-form w on an open subset U of M is an
assignment p € U — w), € /\QTM; satisfying the condition that given

any local coordinate system f : O — Uy C M there exists a smooth
function h : f~1(U N Uy) — R such that w can be written as

w(f(q)) = Mg)(dz1) s(q) A (dw2) p(q)
for all ¢ € f~1(U N Uy). We will use the notation
w=hdxy N\ dxy
on U N Uy with respect to the local coordinate system f.

Wedge products

Let 61,65 be two smooth 1-forms on M. The wedge product 6; A 6,
is defined by

01 A 02('111, U2) = 61(1)1)092(1}2) — 92(’01)91(1)2)

for all v1,v, € TM, and p € M. It follows from the definition that if
01,0, are 1-forms, then

91 VAN 92 == —92 A (91.
Exterior differentiation

If 1-form @ in local coordinates is 6 = hidx,+hodxs, then the exterior
differentiation of 0 is defined to be
df = (_(hl)a:z + (hQ)a:l) dl’l A dl’Q.

The definition of d is independent of the choice of local coordiante
systems. In other words, if 6§ = hydx; + hodxs and 0 = bydy, + badys
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with respect to local coordinate systems ¢, and ¢g respectively, then
a direct computation implies that

(—=(h1)ay + (R2)z,) doy Adry = (—(b1)y, + (b2)y,) dyr A dys.

A 1-form 6 is called ezxact if there exists a smooth function A on M
so that § = dh. A 1-form 8 is called closed if df = 0.

Next we prove the Poincaré Lemma.
Proposition 3.2.5. Let 6 be a 1-form on an embedded surface M in
R3. Then

(1) 0 is exact implies 0 is closed,

(ii) if 0 is closed, then given any p € M, there exist an open subset
U containing p and a smooth function h : U — R such that
0 = dh on U, i.e., 0 is locally exact.

Proof. Let h: M — R be a smooth function, then by definition of d,
d(dh) = d(hy,dxy + heydrs) = (—(hay )ay + (hay)z,) dxy A dxs.

So dh is closed. This proves (i).

Let 6 be a smooth 1-form. Given a local coordinate system f: O —
Uy around p = f(29, 29), we can write 0 = A(xy, x9)dz, + B(x1, 22)dxo
with some smooth function A, B : O — R. The closeness of # means
A,, = B,,. This implies that there exists a small open subset Oy of O
containing (2%, z9) so that

hy, = A, hy, =B.
So 0 = dh on Uy = f(Op). O
It follows from definitions of d and wedge product that we have
Proposition 3.2.6. If 0 is a 1-form and h : M — R smooth, then
d(hf) = dh N0+ hdf = d(Oh) = hdd — 0 A dh.

Smooth bilinear forms

A smooth bilinear form b on an open subset U of M is a collection of
bilinear forms b, : T'M,, xT'M,, — R with p € U satisfying the condition
that given any local coordinate system f : O — Uy on M there exist
smooth functions b;; on f~1(U N Ujp) so that

2
bit) = Y big(q) (d:) gy @ (daj) p(q).

1,j=1
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We will write b locally as Zf i1 bij(z)dz; @ dxy. If by, is symmetric
bilinear for each p € U, then b;; = b;;. When b is symmetric, we will
skip the ® and simply write b as Z?,j:l bij(z)dx;dz;.

When we calculate vector fields and differential forms on M, we only
need to do the computation in local coordinates of M.

3.3. The first and second fundamental forms.

Let M be an embedded surface in R?, and f : O — U a local
coordinate system on M. Then f, , f,, form a base of T'Mj,) for all
x € O and

Jor X o

VIfer < foll

is the unit vector that is normal to T' My, 4,)-

We will assciate to each p € M two smooth symmetric bilinear forms,
the first and second fundamental forms of M. The first fundamental
form of M at p € M denoted by

I, : TM, x TM, — R

is the bilinear functional defined by I,(u,v) = u - v, the dot product of
u,v in R3. Then I, defines an inner product on T'M,. Let

911 = for* fors Q12 =021 = [, faos 921 = far * Jan-
Then

I= glldﬂfl X dl‘g + 912(d$1 X dIL"Q + dZEQ X del) + QQQCZQSQ X diBQ
= gnd:)c% -+ 2g12d:1:1dx2 + gmdl’g.

Since g;; are smooth functions, I is a smooth symmetric bilinear form
on M.

The unit normal vector field N is a map from M to S?, which is
called the Gauss map of M. Recall that the differential of N at p is
the linear map from T'M, to T(5?)y(,) defined by

dNp(u) = (N o a)'(0),

where a : (—¢,€) — M is a smooth curve with «(0) = p and o/(0) = w.
It follows from the definition of dN, that

dN(fl‘l):NIl? dN(fmz):Nxz'

Since the tangent plane of S? at a point ¢ € S? is the plane perpen-
dicular to q. We see that both TSJQV(p) and T'M,, are perpendicular to
N, so they are the same plane. Hence dNV,, can be viewed as a linear
operator from T'M, to T'M,,.
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Proposition 3.3.1. The linear map dN,, : T'M,, — T' M, is self-adjoint.
Proof. Use f,, - N =0 to compute

ANy(f2:) - fa; = Nay - fo; = (N - fa)ae = N - fajo, = =N - fara,-
Similarly,
For - ANp(fo)) = =N - fura,-
This porves that dN,(f,) - fo; = fai - ANp(fe;) = =N - faia;- O
The self-adjoint operator —dN,, : T'M, — TM, is called the shape
operator of the surface M at p. The symmetric bilinear form II,, asso-

ciated to the self-adjoint map —dN,, is called the second fundamental
form of the surface, i.e.,

II(fﬂcz?wa) = _dN(fxz) ' ij =N- flzzg

We can write the second fundmental form II in terms of the dual
basis dx1, dxs:

II = 611 d%% + 2612 dl‘ldl'g + 622 da:%,
where
Eij = _Nmz ’ fmj =N- fﬂﬂzﬂﬂ]

We claim that the first and second fundamental forms are invariant
under rigid motions. To see this, let C'(x) = Az + vy be a rigid motion
of R3, ie., A is an orthogonal transformation and v, is a constant
vector in R®. Let f : O — U C M is a local coordinate system of
the embedded surface M in R3. Then f = C o f is a local coordinate

system for the new surface C'(M), fxz = Af,,, and N = AN is normal
to C(M). Since A is an orthogonal transformation,

(Avq) - (Avg) = vy - vs.
Let I and IT denote the fundamental forms of M = C/(M). Then
G = W fos o)) = for o, = Afuy - Af,
= foi * Jo; = Wai fo;) = 3.
So I =1. Similarly, IT = II. This proves our claim.

Example 3.3.2. Fundamental forms of a graph

Let u : O — R be a smooth function, and f : O — R? the graph of
u, i.e., f is defined by

f(x1,m2) = (21, 72, u(71, T2)),
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ie., M = f(O) is the graph of u. Then

f:t1 = (1>Oau:t1)7 f:m = (07 17“:):2)?
fm1$1 = (Ovoaum1x1)a fac1x2 = (anauanxQ)a fﬂc2$2 = (070’u$2$2)’
<_u$17 —Ug,, 1)
u? +u2, + 1

A direct computation gives
g1 = ffr1 : le =1 +u§17
g12 = f:):l : fxg = Ugy Ugy,

922 = fuy* fuoo =14+ 0ul,

Uzyz,
hllzN'fl‘l.Tl: 3 3 17
uz, +ug, +
Uz, zy
h12:N'fz1;t2: 5 5 17
uz, tuz, +
Ugo o
h22 - N : fwzaﬂz =

w2 +u +1
So the two fundamental forms for f(O) are

I=(1+u?)dz] + 2uy ug,dordas + (1 + u?))dz3,

1
1= (U o, dTT + 2,y T AT + Upye, dT3).

Proposition 3.3.3. Locally a surface is a graph.

Proof. Let f = (f1, fo, f3) : U — R3 be a surface. Given p = (g, y0) €
U, since f,,, fz, are linearly independent,

i j k
det (f1)901 <f2>r1 (f3)$1 (p) 7£ 0.
(f1)332 <f2>$2 (f3)$3

So one of the following 2 x 2 determinants at p must be non-zero:

(G ) (e ) (8 )

Suppose
(fl)flil (fQ)Il
et ((f () o) #o
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Let 715 : R? — R? denote the projection of R? to the first two coordi-
nates. Then the differential of the map mp 0 f : U — R? at p is given

by the matrix
(G )

at p, which is non-singular. By the Inverse Function Theorem, there
exist open subsets Oy, Os containing p and (f1(p), fa(p)) respectively so
that m 0 f maps O, diffeomorphicallyjo O,. Let h : Oy — O, denote
the inverse of a0 f : O — Oy, and f(y1,y2) = f o h(y1,y2). In other
words, we have changed coordinates (z1,x2) to (y1,y2) and expressed
(x1,22) € Oy in terms of (y1,y2) € Oz. Hence f5(z1,22) = f3(h(y1,y2))
is a function of y; and y,. So we see that

T, y2) = (Y1, y2, f3(h(y1,92)))

is a graph of u = f3 0 h and f is a local parametrization of M. O

Angle and arc length

Since I, gives an inner product on 7'M, for all p € M, we can use I
to compute the arc length of curves on M and the angle between two
curves on M:

(1) if oy, g = (—€,€) — M are two smooth curves such that oy (0) =
a3(0), then the angle between «; and «aw is defined to be the
angle between o/ (0) and a4(0),

(2) the arc length of a curve on M given by «(t) = f(x1(t), z2(t))
with ¢ € [a, b] is

b b
[ 0@ = [ st + Ll
b 2 %

1,j=1

b 2 %
_ / (Z gij(:pl(t),xQ(t))xg(t)m;(t)) dt.

1,7=1

Recall that the area of the parallelgram spanned by vy, v, in R? is
equal to

1
. . 2
[fov]] [foal] |0089|=||711><212||:(det (Ul vt v UZ)) |

V1 -V2 V- V2

where 0 is the angle between v; and vs.
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Proposition 3.3.4. Let f : O — U C M be a local coordinate system
of an embedded surface, and g;; = [y, - [z, the coefficients of the first
fundamental form. Then the area of U is

AreaU:/ far - Jas d:vdx:/ det(g;;) dxidxs.
()OH ||120\/(y)12

The second fundamental form has a very simple geometric meaning;:

Proposition 3.3.5. Let v be a unit tangent vector of M = f(O) at
p € M = f(O), and « the intersection curve of M and the plane
through p spanned by v and the normal vector N, of M at p. Then
[I(v,v) is the curvature of the plane curve « at p.

Proof. Write a(s) = f(z1(s), za(s)) with arc length parameter. Then

2
a’(s) = Z i, 035

ij=1
Since N(p) is normal to M at p and /(0) = v, N(p) is normal to o/(0).
But the curvature of the plane curve av at s = 0 is &”’(0) - N(p), and

2

&(0) N = (fara, - N)xiay = hyalay = (/' (0),0/(0)).

i,j=1 ij=1

3.4. The Gaussian curvature and mean curvature.

Definition 3.4.1. The eigenvalues A, Ay of the shape operator —dN,,
are called the principal curvatures of M at p, the unit eigenvectors
of —dN, are called the principal directions, det(—dN,) is called the
Gaussian curvature, and the trace of dN, is called the mean curvature
of M at p.

So we have
1
K(p) = det(—=dN,), H = §tr(—de).

If A1, A2 are eigenvalues of —dN,, then
K =M\, H=XM+ M.
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Proposition 3.4.2. Let f : O — U be a local coordinate system of
an embedded surface M in R?, and g;;, {;; the coefficients of 1,11 on U
respectively. Then

o det(l;)  liiloy — (7,
det(gi;) 911922 — 9ia’
g2l — 2912012 + grilan
a 911922 — Gio
Proof. By Proposition 3.1.4, K = det(G™'L) = ‘;%((f;, and H =
tr(G™'L). The formula for H follows from

G — 1 922 —012
det(g;;) \—912 9gu )

Suppose vy, v2 are unit eigenvectors of —dN, with eigenvalues \; >
Mg, then IT,(u, u) assumes minimum value Ay on the unit circle of 7'M,
at v, and maximum value A; at v;.

H

d

Below we compute the K and H of a plane, a sphere, a cylinder, and
a graph.

Example 3.4.3. Let M be a plane. Let us parametrize it as a graph
f(l’l, .CL’Q) = (xl, T2, A1T1 + CLQJJQ). Then
ai, ao, —1
for = (L0,ar), foy = (0,1,a), N = 002U
aj +az + 1
Since N is a constant vector, N, = 0. So the shape operator dN, = 0.
Hence K =0 and H = 0. The first and second fundamental forms are
[=(1+al)da}+ (1+ ad)dx3, 11=0.

Example 3.4.4. Let M be the sphere of radius r. Let f(x1,25) be a
parametrization of a piece of the sphere. Note that the unit normal N of
M at f(w1,29) is + f(z1,x2). Hence dN(f,) = Lf, and dN(f,) = 1f,.
This means that dN, = %Id. So K = %2 and H = —2.

Example 3.4.5. Let M be the cylinder parametrized as
f(z,y) = (rcosz,rsinx,y).
Then
fe = (=rsinz,rcosx,0),
£, = (0,0,1),
N = (cosz,sinz,0).
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So N, = % f» and N, = 0. This means that dN, has two eigenvalues %
and 0. Hence K =0 and H = —%. The first and second fundamental
forms are

=r?dat +dy®, 11 = rda®
Note that both a plane and a cylinder have Gaussian curvature 0.

Example 3.4.6. K and H for a graph

Let f(x1,22) = (1,29, u(x1,x2)) denote the graph of a u: O — R.
We have computed the first and second fundamental form in Example
3.3.2. By Proposition 3.4.2, we have

2
Ugyzq Uzozs — Uy g

(1+u2 +u2)?’
(1 + uil>ul‘2$2 - 27“69617“63627“6331%2 + (1 + u332>u931$1

3
(14 uf, +u,)

(3.4.1) K =

(342)  H=

Definition 3.4.7. A point p in a surface M C R? is called an umbilic
point if the shape operator at p is equal to AId for some scalar A, or
equivalently, the two prinicipal curvatures are equal at p.

Definition 3.4.8. A unit tangent direction u of an embedded surface
M in R? is called asymptotic if 1I(u,u) = 0.

Exercise 3.4.9. (1) If K(po) < 0, then there exist exactly two
asymptotic directions.
(2) If p is not an umbilic point of M, then there exists a local
smooth o.n. frame vy, vy on M near p so that vi(q),ve(q) are
principal directions of M at q.

Next we give some geometric interpretation of the Gaussian curva-
ture K. The first is a consequence of the Taylor expansion:

Proposition 3.4.10. Let M be an embedded surface in R®, andp € M.

(1) If K(p) > 0, then there is a small neighborhood O, in M of p
such that O, lies on one side of the tangent plane of M at p.

(2) If K(p) <0, then given any small open subset of M containing
p, M lies on both sides of the tangent plane of M at p.

Proof. After rotation and translation, we may assume that p = (0, 0, 0),
M is parametrized as a graph

flxr,22) = (1, X2, u(21, 22))
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in a neighborhood of p, and the unit normal N, = (0,0, 1). This means
that we assume

w(0,0) = 0, g, (0,0) = 0.
Assume K(p) > 0, then A;(p)X2(p) > 0. So either both A, Ay are

positive or both are negative. So I1(0,0) is definite. Use Example
3.3.2 formula (3.4.1) to conclude that (uy,,.(0,0)) is positive definite or

J
negative definite. Suppose it is positive definite. Then the quadratic
form 37, s, (0,0)yy; > 0 for all y € R*. On the other hand, the

Taylor theorem of w implies that
u(zy, o)

1
= u(0,0) + ugz, (0,0)1 + gy (0,0)zs + 3 Z Uz, (0,0) 2525 + o(r?),

ij

1
=3 Z Uz, (0,0)x525 4 0(r?)

ij

where % = .22, So there exists § > 0 so that if 0 < ||z | < 4,
then u(zy,x2) > 0. This proves (1). Statement (2) can be proved in a
similar manner. O

Proposition 3.4.11. Let f : O — U C M be a local coordinate system
of an embedded surface M in R®, N the unit normal field, and p =

f(a) € f(O). Then

iy Area(N(9Q)
K(p) = lim Area(f(Q))

Proof. By Proposition 3.3.4 we have

Area(f(Q?)) = /W | fo % fylldxdy,
Area(N(Q)) = / IN, x N, |[dzdy.
w

Since dN(f;) = N, and dN(f,) = N, we have
[No: > Ny || = [det(dN)[[[fo x fyll = [KI[|fe < fyll-

Proposition follows from the fact that the Gaussian curvature K is a
smooth function. O

To understand the meaning of mean curvature H we need calculus
of variations.
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4. Calculus of variations

Let 2 be an open subset of R” with smooth boundary such that the
closure Q is compact, and 99 the boundary of . Let o : 9Q — R™
be a smooth map, and C'°(€2, R™) the space of smooth maps u from (2
to R™ so that u|02 = a. Let L : Q x (R™)"*! — R be a smooth map,
and J : C°(Q,R) — R the function defined by

J(u) = / L($7u7ux17"~7uxn) dxl dl‘n
Q

The function L is called a Lagrangian, and J the functional defined by
L. The calculus of variations studies the condition on u when u is a
“critical point” of L. Since C5°(§2,R™) is an infinite dimensional vector
space, we need to extend the concept of critical point to this function
space.
Recall that the following statements are equivalent for a smooth

function f: R" — R:

(1) pis a critical point of f,

(2) fa:1(p> == fa:n(p) =0,

(3) %‘ f(a(t)) = 0 for all smooth curve a through p.
t=0
We will use (3) to define critical points for the functional J defined

by the Lagrangian L. Let u € C2°(2, R™).

Definition 4.0.12. A smooth variation of u € C°(2,R™) is a curve
B (—e€) — CL(Q,R™) so that 5(0) = uw and (s,z) — [(s)(x) is
smooth. Note that v(z) = 2| B(s)(z) is a smooth map from Q to

R™ that vanishes on 0f2. Pl

Definition 4.0.13. u € C°(2,R™) is a critical point of J if
(JoB)(0)=0

for all smooth variations (§ of u in C°(£2, R™).

Proposition 4.0.14. If u € C°(Q,R™) assumes mazimum (or mini-
mum) of J, then u is a critical point of J.

Proof. Let B : (—¢,e) — CX(Q,R™) be a smooth variation of u in
C>(Q,R™). Then s = 0 is an exteme point of Jo 3 : (—e€,¢) — R and
4|_o(J o f) = 0. This implies that extreme point of J is a critical
point of J. O

To derive the condition for u to be a critical point of the functional
J, we need a Lemma:
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Lemma 4.0.15. Given a smooth map (g1, , gm) : 2 — R™, if

n

/ Zgj(x)hj(x)dxl codr, =0

for all smooth (hy,--- ,hy): Q — R™ with h | 02 =0, then g; =0 for
all1 < j <n.

Proof. We will prove this Lemma when m = 1 and n = 1. For general
m,n, we use the Stoke’s Theorem instead of the Fundamental theorem
of calculus. Since in this notes, we only need to deal with the case
when n = 1 or 2, we will give a proof when n = 2 in more detail later.

If g is not identically zero, then we may assume there is an interval
(01,09) C [0,1] so that g is positive on (d1,d2). Choose € > 0 so
that € < @. Now choose h to be a non-negative function, which
vanishes outside (d1,d2) and is h > 0 in (1 + €,y — €). Then gh > 0
on (61 + €,02 — €) and is non-negative on [0, 1]. So folg(t)h(t) >0, a
contradiction. Hence g = 0. U

We will derive the condition for critical points of L in the later sec-
tions.

4.1. Calculus of Variations of one variable.

In this section, we derive the condition for a curve on an embedded
surface M in R3 joining p, ¢ € M that has shortest arc length.

Given p,q € R", let M,,, denote the space of smooth curves x :
[0,1] — R™ so that z(0) = pand z(1) = ¢. Let L : [0, 1] xR*"xR"” — R
be a smooth function, and J : M,,; — R the functional defined by

(4.1.1) J(z) = /0 L(t, o(t), 2/ (1)) dt.

Suppose 7 is a critical point of J. Let § be a variation of v, and

B'(0) = h. Let
b(s,t) = B(s)(t).
We have

b(0,8) = 7(t), h(t) = —(0,1), h(0) = h(1) = 0.
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By definition of critical point and integration by part, we get

d d ! b
0= | J(B(s)) = P s:o/o L (t b(s,t), 815) dt
/1 OL ob; OL 0%
= — =+ dt
dzr; 0s  Qy; Otds|,_,

/Z ((%J Z—h’) dt, here’ means —

| < oo
Jua

! oL oL
= a.. tﬁ 13 77, 13 ( )
/3 (5 tate 70 - ay](
oL |'
2 gyt
7 ;o
Since h(0) = h(1) = 0, the boundary term is zero. Hence we have

[ G-

for all smooth h : [0,1] — R™ with h(0) = k(1) = 0. By Lemma 4.0.15,
we get

oL 1107/ 0) — (=t 0) ) =0

So we have proved

Theorem 4.1.1. Let J ./\/lpq — R be the functional defined by

L(t,x,y), i.e., J(v fo ,Y'(t))dt. Then~y € M, is a critical
point of J if cmd only if
OL OL '
4.1.2 —(t,7,7) = t :
(4.1.2) amj(,%v) (ay]( 77))

Equation (4.1.2) is called the Euler-Lagrange equation for the func-
tional J.

Example 4.1.2. Let L(t,z,y) = Y., vy?, and E : M, , — R the
functional defined by L, i.e.,

- [ Sz
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The functional F is called the energy functional. A direct computation
implies that Euler-Lagrangian equation for E is y”(t) = 0. So y(t) is
linear. Since y(0) = p and y(1) = ¢, we have y(t) = p+t(qg —p) a
straight line.

4.2. Geodesics.

Let M be an embedded surface in R*, and f : O — U C M a
coordinate system. A smooth curve « : [0,1] — U C M is given by a
smooth curve (z1(t),z2(t)) in O such that

aft) = f(z1(t), 2a(t)).
So o/(t) = >, fz@;. Since the arc length of « is approximated by
>l At,
the arc length of « is given fol |/ (t)]|dt. But

[P =o' o = (Z fm:c;) : (Z fx]w}-) = fo, - foyai]

% i

= Zgij (2)zj2s = 1(/, o).
tj

J

So the arc length of « is
1
L(z) = / Zg”(:c)x;a:; dt.
0 r

We want to calculate the Euler Lagrange equation for the energy and
arc length functionals on the surface M = f(O) in R3. Let p = (29, 29),
q = (z1,73), and M,,, the space of all smooth z : [0,1] — O such that
x(0) = p and z(1) = ¢. Suppose the first fundamental form of M is
I=239i;(x)dvidy;. 1f x:]0,1] — O lies in M,,;, then y = foxisa

curve on M joining f(p) to f(gq) and
1Y (O = Zgij(x(t))x;(t)x;‘(t)'
Let

(4.2.1) L(z,y) = %Zgij(x)yiyh
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and E and L denote the energy and arc length functionals
1
B(@) = [ Lz(t). ' (0)i.
01
= / V L(z(t), 2'(t))dt.
0

The Euler-Lagrange equation for the functional £ and L are

(4.2.2) oL _ (aL) . k=12

Oxy, oz},

OL oL \'

e oz’
423 Oz _ i)
423) NG (zﬁ)

respectively.

A direct cornputation gives

’od
E 9ij kT, T where g; ik =
8l‘k J Rk J

/
_ ] I i
(83%) <Z 9ikZ; ) - ; gzk,mxixm + Z 9ikZ; ,
Playing with indices to get

! ! !/ ! !
E Gik,;mTi Ty, = E Jik,jT;T; = E :gﬂwwjxi'
Ji

im ij

Note that the first equality is true because we just let m = j, the second
equality is true because we interchange 7, j in the summand. Hence

A 1 W, W,
JikmTiTm = 5 GikjTiT; + ) GikiTiT; | -
im Py i

This implies that the Euler-Lagrange equation of the energy functional
Eis
(424> Zgzkx” + 3 Z ki ,j + ik, — YGij, k) ; ; = 0.

ij

Let ¢g" denote the ij-th entry of the inverse of the matrix of (g;;).
Multiply (4.2.4) by g™ and sum over k to get

Z A Zg (ki + ik — Gijw) T3y = 0.
ijk
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But >, % grm = dim and (g;;) is symmetric. So we get

(4.2.5) z + % Z 9" (Grig + Gjki — Yijk) zix = 0.
ijk

So we have proved the first part of the following theorem:

Theorem 4.2.1. If x(t) is a critical point of the energy functional E,
then

(1) z is a solution of
(4.2.6)  + Z Il = 0,
where I} = 537, gkm(gki,j + Gjki — Yijk)-
(2) [|2/(t)|| is independent of t.

Proof. It remains to prove (2). We compute as follows:

/
(ZgZJ ) ;) :Zgijykx xk"‘ZgUw” Lt gyl

ijk

- Zgiﬁk%; (Z iUt aids + gl x%x%)
ijk ijm

= Zgzjkx;a:;xﬁc — ngjl“zz:c’x;x — Zgsz Ty
ijk z'jm igm

1

= Zgij,ka:; Z mjig"" [ik, r)z; .CEk.T gmg "k7, 7’]37;352;35;
ijk z]kmr

= Z (gw K — Z((Sjr[ik,r] + 0ir[kJ, 7’])) T,
ijk

=> (gm, =ik, j] — 2[/?7, ]) e
ijk

1 AW
= (9in— gk] i+ Gk = Ging) = 5 (Grig + Gk = Grja) | TG
ijk
—0,

where [ij, k] = @i + 9jki — Gijk- (In the above computation, the
second term of the third line is obtained by interchanging i and m,
and the third term is obtained by interchanging j and m). This proves

2" (t)])* = > i; 9i (2 (t)) ()2 (t) is constant. ]
Proposition 4.2.2. If k : [a,b] — [0,1] is a diffeomorphism, then
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(1) L(x o k) = L(x), i.e, the arc length of a curve on M does not
depend on the parametrization of the curve.
(2) if x is a critical point of J, then so is x o k.

d x ds
Proof. Suppose s = k(r) and y(r) = z(k(r)). Then ¥ = %24 Both

statements follow from the change of variable formula in integration.
O

Proposition 4.2.3. If x is a critical point of the arc length functional
L and is parametrized proportional to its arc length, then x is a critical
point of the energy functional E. Conversely, if x is a critical point of
E, then x is parametrized proportional to its arc length and is a critical
point of L.

Proof. 1f x is a critical point of £, then we may assume that a(t) =
f(z1(t), z2(t)) is parametrized by arc length parameter. This means
we may assume ||o/(t)|| = 1. But

o/ (t)]]* = Zg”xm = ') =1

Since x is a critical point of L, x is a solution of (4.2.3). But L(z,2') =1
implies that x is a solution of (4.2.2), i.e., x is a critical point for E.
Conversely, if = is a critical point of E, then by Theorem 4.2.1 (ii),
L(z,2’) is constant. If L(x(t),2'(t)) is constant, then (4.2.3) and(4.2.2)
are the same. This proves that if x is a critical point of F, then z is a
critical point of L. 0

A critical point of the arch length functional £ on M, , is called a
geodesic. Equation (4.2.6) is called the geodesic equation.

It follows from Proposition 4.0.14 that if v(t) = f(x1(f),z2(t)) is a
curve on M joining p, ¢, which is parametrized by arc length, and has
shortest arc length, then ~ is a geodesic and (z1(t), z2(t)) is a solution
of the geodesic equation.

4.3. Calculus of variations of two variables.

Suppose € is an open subset of R? such that the boundary 0f is a
simple closed curve. Fix a function v : 9Q — R, let C,(€2,R) denote
the set of all smooth maps u :  — R so that u | 9Q = . Let

L:Qx(R*)* =R
be a smooth function, and J : C,(2,R) — R the functional defined by

(4.3.1) J(u) :/QL(x,y,u(x,y),ux(x,y),uy(x,y))dxdy.
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We want to derive the condition for u being a critical point of J. This
can be carried out in a similar manner as for one variable case except
that we need to use the two dimensional version of The Fundamental
Theorem of Calculus, i.e., the Green’s Formula or the Stoke’s theorem
for dimension 2.

First, we recall the definition of the line integral,

j{ P(z,y)dx + Q(z,y)dy.
99

Let (z,y) : [a,b] — R? be a parametrization of the boundary curve 9.
Then

b
¢ ParQdy= [ Plalt).u(0)2(®) + Q. u®) @) d.
oN a
The Green’s formula is

Theorem 4.3.1. Let P,Q : Q2 — R be smooth functions. Then
(4.3.2) j{ P(z,y)dz + Q(x,y)dy = //(—Py + Qz)dzdy.
o0 Q

Suppose u is a critcal point of J. We want to find the condition
on u. Let § be a variation of u in C,(©2,R), and h = §(0), ie.,
Wz, y) = £ls=0B(s)(z,y). Since B(s)| | 92 = v, we have h|0Q = 0.
Compute directly to get

d oL oL oL
% Szoj(ﬁ(s)) = /Q %h + a—uxhx + a—uyhy dSde
L

oL 0 oL oL oL
—Qéﬁ*<mﬁl‘(mﬁj”(afl‘(%ﬁj”“y
oL OL oL
[ (G- (E).- (5E), ) s
oL oL

It follows from the Green’s formula (4.3.2) that the second term is

oL hdy—g—Lhdx.

a0 @ux Uy

But i | 022 = 0. So the line integral is zero. This shows that if u is a
critical point of J, then

oL oL oL
L(%‘(m);(%ﬁjh“@—o
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for all smooth functions A : 2 — R that vanishes on 0.
A similar proof gives the following analogue of Lemma 4.0.15 for R"™.

Lemma 4.3.2. Let Q C R™ be an open subset, and f : Q@ — R a
smooth map. If

/ f(z)g(z) doy - -dz, =0

Q
for all smooth g : Q — R that vanishes on 082, then f = 0.

Hence we have proved

Theorem 4.3.3. If u is a critical point of J defined by (4.3.1), then

oL oL oL
e o). (@),

(This is the Euler-Lagrange equation of J defined by (4.3.1)).

Example 4.3.4. Let Q C R?, o : 992 — R a smooth function, and
L(u) = u? +u; for u € CP(Q,R). Use Theorem 4.3.3 to compute

directly to see that u is a critical point of the functional J defined by
L if and only if

Ugg + Uyy = 0.

4.4. Minimal surfaces.

Let M be an embedded surface in R?, and f : O — U a local coor-
dinate system on M, and 2 C O a compact domain. By Proposition
3.3.4, the area of the parallelgram spanned by f,, fz, is y/det(g;;). To
approximate the area of f(2), we first divide the domain 2 into small
squares, and approximate the area of the image of f of each square by
the area of the parallelgram spanned by f,, Az; and f,,Azs, then we
sum up these approximations

Z \/ det gij AxlA:EQ.
So the area of f(£2
area = // \/det(gij(z)) driday = // \/ 911922 — 935 dxidxs.

We want to show that if f(£2) has minimum area among all surfaces in
R? with fixed boundary f(92), then the mean curvature of M must be
zero. Since the condition for critical point of a variational functional is
computed locally and locally a surface in R? is a graph, we may assume
that f : Q) — U is a graph and the variations are done through graphs.
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A surface in R? is called minimal if its mean curvature H = 0.
We will show that if a surface M in R? is a critical point of the area
functional then the mean cruvature of M must be zero, ie., M is
minimal. In fact, we will prove that the Euler-Lagrangian equation for
the area functional is the equation H = 0.

Let u: O — R, and f(x1,x2) = (21, a2, u(x1,22)) be the graph of w.
Let Q C O. If M = f(Q) has minimum area among all surfaces in R3
that have the same boundary as f(€2), then u must be a critical point

of the area functional
= // \/det(gij) dIleEQ.
Q

It is computed in Example 3.3.2 that
gi =1+ u2_ g12 = Uz, Uy, -

So det(g;;) = (14 uZ, +u2,). The area functional is

// 1+uil+u32)%dx1dx2

By Theorem 4.3.3, u must satisfy the Euler-Lagrangian equation (4.3.3).
A direct computation gives
<(1 +uZ + ui)’% um) + ((1 +uZ + uf@)’% um) =0.
1 2
So we have
(1 + ugg)ua?lfﬂl - 2u931u932u$1$2 + (1 + uil)umm
(14u2, +u2)?

But the left hand side is the mean curvature H of the graph of u (cf.
Example 3.4.6 formula (3.4.2)). So the mean curvature must be zero,
i.e., M is minimal. We have proved

=0.

Theorem 4.4.1. The Euler-Lagrangian equation of the area functional
Ais H=0.

5. Fundamental Theorem of surfaces in R?

Let M be an embedded surface in R?, and f : O — U C R? a local
coordinate system on M. Our experience in curve theory tells us that
we should find a moving frame on the surface and then differentiate the
moving frame to get relations among the invariants. However, unlike
the curves, there do not have natural local orthonormal frames on
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general surfaces in R3. We will use several different moving frames F' =
(v1, v9, v3) on the surface to derive the relations among local invariants.
Express the  and y derivatives of the local frame v; in terms of vy, vg, v3,
then their coefficients can be written in terms of the two fundamental
forms. Since (v;)zy = (vi)yz, we obtain a PDE relation for I and II.
This is the Gauss-Codazzi equation of the surface. Conversely, given
two symmetric bilinear forms g, b on an open subset O of R? such that
g is positive definite and g, b satisfies the Gauss-Codazzi equation, then
by the Frobenius Theorem there exists a unique surface in R? having
g,b as the first and second fundamental forms respectively.

5.1. Gauss-Codazzi equations in arbitrary local coordinates.

Let f: O — U C M be a local coordinate system of an embedded
surface M in R3. We use the frame (f,,, fu,, V), where

Jor X Ja
[ fa1 X fa]

is the unit normal vector field. Since f,,, fu,, N form a basis of R?, the
partial derivatives of f,, and N can be written as linear combinations
of fi,, fz, and N. So we have

(511) {<f$1’f$2’N)zl = (fiUl’fl‘Q)N)P’

N =

(fﬂﬁlv f£ﬂ27 N)€E2 = (f:vufwgaN)Qa
where P = (p;;), Q = (gi;) are gl(3)-valued maps. This means that

frrzr = P11fwy + P21 fo, + D311, forzo = @1 for + @21 fos + @3N,
Jrozr = P12fzy + P22 fay + D32V, frozo = Q12f21 + @22 fas + @32 N,
Ny, = p13fay + D23 fay + P33, Nay = qi3fz, + @3 foy + q33N.

Recall that the fundamental forms are given by

We want to express P and () in terms of g;; and h;;. To do this, we
need the following Propositions.

Proposition 5.1.1. Let V' be a vector space with an inner product ( ),
U1, LU, a basis of V., and gi; = (vi,v;). Let £ € V, & = (€,v;), and
§=>" xw. Then
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where G = (g;5).
Proof. Note that

n n
sz E ZEJUJ,UZ E fL‘j(Uj,Ui>: E Gjily.
j=1 j=1

SO(fl"“?én) = (x].?...’xn). D
Proposition 5.1.2. The following statements are true:

(1) The gl(3) valued functions P = (p;;) and Q = (g;;) in equa-
tion (5.1.1) can be written in terms of gi;, {;j, and first partial
derivatives of g;;.

(2) The entries {pij,qi; | 1 <i,j < 2} can be computed from the
first fundamental form.

Proof. We claim that
fl‘il‘j'fzk7 fximj'Na Nmi'f$j7 NLEINJ

can be expressed in terms of g;;, ¢;; and first partial derivatives of g;;.
Then the Proposition follows from Proposition 5.1.1. To prove the
claim, we proceed as follows:

(5.1.2)
f:cla:l fxl = %( u)a:,;
fmixj Jo, = %(gn‘)a:j, if @ # 7,
fwimi ’ fﬂcj = (fmz ’ fac])acZ - fa:l : f:rj:pi = (gij)zi - %(gii)zj, if 4 #]
Jaw; - N = @L‘j,
(5.1.3) Ny, « fo; = —Lij,
N, -N=0
Let
g1 g12 0
G=1912 92 0
0O 0 1
By Proposition 5.1.1, we have
(5.1.4)
r g0 5(911) 2, 5(01)e, —ln
P = 912 922 0 (912)z1 - %(911)952 %(sz)ml —{19
0 0 1 {11 U9 0
g 0\ (5(91)e (912)rs — 5(922)a —lr2
Q=1{4g" ¢ 0| | 3(922)x 5(922) — {2
0 0 1 g lao 0
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This proves the Proposition. U

Formula (5.1.4) gives explicit formulas for entries of P and () in terms
of gi; and £;;. Moreover, they are related to the Christofell symbols T,
arise in the geodesic equation (4.2.6) in Theorem 4.2.1. Recall that

|
Ly = 59" lig,m),
where (gij) is the inverse matrix of (gi;), [¢7, k| = ki + 9jki — Gijxk, and
Jijk = ag:;'
Theorem 5.1.3. For 1 <1,7 <2, we have
(5.1.5) pi=T%,  qi=T%
Proof. Note that (5.1.4) implies
1 1
P11 = 5 911911,1 + 912(912,1 - 5911,2) = Fh’
I L 1
P12 = 59 g2 + 59 9221 = Ty,
1 1
P21 = 5912911,1 + 922(912,1 - 5911,2) = F%la
L L o 2
Do = 59 gi12 + 59 9221 =15,
14 L 1
q1 = 59 g2 + 59 9221 = I'15,
1 1
q12 = 911(912,2 — 5922,1) + 5912922,2 = 1%27
- 1 12 1 22 _ 2
Qo1 = 29 g2 + 29 9221 = 179,
1 1
(5.1.6) Qo2 = 912(912,2 - 5922,1) + 5922922,2 = Png

Note that
qi1 = P12, 421 = P22.

Theorem 5.1.4. The Fundamental Theorem of surfaces in R3.
Suppose M is an embedded surface in R®, and f : O — U a local
coordinate system on M, and g;;,¢;; are the coefficients of I,11. Let
P, Q be the smooth gl(3)-valued maps defined in terms of g;; and l;; by
(5.1.4). Then P,Q satisfy
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Conversely, let O be an open subset of R?, (gi;), (i) : O — gl(2)
smooth maps such that (g;;) is positive definite and ({;;) is symmetric,
and P,Q : U — gl(3) the maps defined by (5.1.4). Suppose P, Q) satis-
fies the compatibility equation (5.1.7). Let (29,29) € O, py € R3, and
U1, ug, uz a basis of R? so that u; - uj = g;;(29,23) and u; - uz = 0 for
1 <i,j < 2. Then there exists an open subset Oy C O of (29, 29) and
a unique immersion [ : Oy — R3 so that f maps Oy homeomorphically

to f(Oy) such that
(1) the first and second fundamental forms of the embedded surface

f(Op) are given by (gi;) and ({;;) respectively,
(2) f(.’l'(l),il?g) = Do, and fxz(-r(l), -'L'g) = U; fOT’ 1= 1, 2.

Proof. We have proved the first half of the theorem, and it remains
to prove the second half. We assume that P, satisfy the compati-
bility condition (5.1.7). So Frobenius Theorem 2.4.1 implies that the
following system has a unique local solution

(U17U27U3)$1 - (U17U2,'U3)P7

(V1,V2,V3)2, = (V1,02,03)Q,

(U17U27U3)<x(1)7x(2]> = (u17u2au3)-
Since (u,ug,ug) is invertible, so is (vy, va, v3).

We claim that v; - v3 = 0 for ¢« = 1,2. To see this, we let p;; and g;;
denote the ij-th entry of P and @) respectively. Then

(Vi - V3)g; = (Vi)ay - U3 + ;- (V3)2, = P3i + Pis = 0.

Similar argument implies that (v; - v3)s, = ¢3i + @3 = 0. But v; - v3
is zero at (z9,29). So by uniqueness of solution of ODE, we see that
V; - V3 = 0.
Next we want to solve
f1‘1 = V1,
f:BQ = V2,
f(x(l)a iL‘g) = Po-

The compatibility condition is (v1)., = (v2)s,. But

3 3
(V1)ay = Z gj1vj,  (V2)e, = ijQUQ'
Jj=1 J=1

It follows from (5.1.4) that the second column of P is equal to the first
column of . So (v1)z, = (v2)s,, and hence there exists a unique f.
The rest of the theorem follows. U
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System (5.1.7) with P,@Q defined by (5.1.4) is called the Gauss-
Codazzi equation for the surface f(O), which is a second order PDE
with 9 equations for six functions g;; and ¢;;. Equaqtion (5.1.7) is
too complicated to memorize. It is more useful and simpler to just
remember how to derive the Gauss-Codazzi equation.

It follows from (5.1.1), (5.1.4), and (5.1.5) that we have

2 2
Joiwn = ijifm]- + N = Z I} fa; +LaN,
j=1 j=1

2 2
Joizs = Z%Q:iij + liaN = ng2ij + LiaN,
j=1 j=1

where p;; and ¢;; are defined in (5.1.4).
So we have

J

Proposition 5.1.5. Let f : O — R? be a local coordinate system of an
embedded surface M in R3, and a(t) = f(x1(t), x2(t)). Then « satisfies
the geodesic equation (4.2.6) if and only if &' (t) is normal to M at a(t)
for all t.

Proof. Differentiate o/ to get o/ = Zle faxh. So

2
" ! "

3,j=1

2
1,7,k=1
2

1ji g
ij=1

5.2. The Gauss Theorem.

Equation (5.1.7) is the Gauss-Codazzi equation for M.
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The Gaussian curvature K is defined to be the determinant of the
shape operator —dN, which depends on both the first and second fun-
damental forms of the surface. In fact, by Proposition 3.4.2

_ 611622 - 8%2
d11922 — 9%2

We will show below that K can be computed in terms of g;; alone.
Equate the 12 entry of equation (5.1.7) to get

K

3
(P12);p2 - (q12):p1 = Zpquj2 — q15Pj2-
j=1

Recall that formula (5.1.6) gives {p;;,¢;; | 1 < 4,5 < 2} in terms of
the first fundamental form I. We move terms involves p;;, q; with
1 <14,7 <2 to one side to get

2

(5.2.1) (P12)2s — (12)2y — ZpqujQ — q1jDPj2 = P13932 — q13P32-
j=1

We claim that the right hand side of (5.2.1) is equal to

—911(511522 - 6?2) = —911(911922 - ng)K.
To prove this claim, use (5.1.4) to compute P, Q to get

P13 = —(911311 + 912512), P32 = 12,
q13 = —(911512 + 912f22), q32 = lao.
So we get

2

(5.2.2)  (p12)as — (q12)ay — Zpquj2 — q1;P53 = 9" (911922 — 910 K.
j=1

Hence we have proved the claim and also obtained a formula of K
purely in terms of g;; and their derivatives:

(P12)es — (q12)y — Zizl P134952 — 415D53

K =
911(911922 - 9%2)

This proves

Theorem 5.2.1. Gauss Theorem. The Gaussian curvature of a
surface in R® can be computed from the first fundamental form.

The equation (5.2.2), obtained by equating the 12-entry of (5.1.7),
is the Gauss equation.
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A geometric quantity on an embedded surface M in R" is called
intrinsic if it only depends on the first fundamental form I. Otherwise,
the property is called extrinsic, i.e., it depends on both I and II.

We have seen that the Gaussian curvature and geodesics are intrinsic
quantities, and the mean curvature is extrinsic.

If ¢ : My — M; is a diffecomorphism and f(xy,z3) is a local coor-
dinates on My, then ¢ o f(z1,x2) is a local coordinate system of M,.
The diffeomorphism ¢ is an isometry if the first fundamental forms for
M, My are the same written in terms of dxy, dx,. In particular,

(i) ¢ preserves anlges and arc length, i.e., the arc length of the
curve ¢(a) is the same as the curve o and the angle between
the curves ¢(a) and ¢(f3) is the same as the angle between «

and [,

(ii) ¢ maps geodesics to geodesics.

Euclidean plane geometry studies the geometry of triangles. Note
that triangles can be viewed as a triangle in the plane with each side
being a geodesic. So a natural definition of a triangle on an embedded
surface M is a piecewise smooth curve with three geodesic sides and
any two sides meet at an angle lie in (0, 7). One important problem in
geometric theory of M is to understand the geometry of triangles on
M. For example, what is the sum of interior angles of a triangle on
an embedded surface M7 This will be answered by the Gauss-Bonnet
Theorem.

Note that the first fundamental forms for the plane

f(l“l,xz) = (1’1790270)
and the cylinder
h(z1,x9) = (cos 1, sin 1, x2)

have the same and is equal to I = dz? + dz2, and both surfaces have
constant zero Gaussian curvature (cf. Examples 3.4.3 and 3.4.5). We
have also proved that geodesics are determined by I alone. So the
geometry of triangles on the cylinder is the same as the geometry of
triangles in the plane. For example, the sum of interior anlges of a
triangle on the plane (and hence on the cylinder) must be 7. In fact,
let ¢ denote the map from (0,27) x R to the cylinder minus the line
(1,0, z5) defined by

(1, x2,0) = (cosxy,sinzy, xa).

Then ¢ is an isometry.
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5.3. Gauss-Codazzi equation in orthogonal coordinates.

If the local coordinates zq,xs are orthogonal, i.e., g;o = 0, then
the Gauss-Codazzi equation (5.1.7) becomes much simplier. Instead
of putting g12 = 0 to (5.1.7), we derive the Gauss-Codazzi equation
directly using an o.n. moving frame. We write

g1 =A%, g =A45 g =0.

Let

_fu  _fe

_A17 62_142’ 63:N

€1

Then (eq, €2, €3) is an o.n. moving frame on M. Write

(61,62763)951 = (61762763)]57
(61762, 63)932 = (61762763)@

Since (e, es, e3) is orthogonal, P, Q are skew-symmetric. Moreover,
Pij = (€j)ar - €55 Gij = (€j)ay - €.
A direct computation gives

(el)m T €2 = <%)ml . & = M

Ay AA,
_ (fm 'fm)m — f:c1 'fx1x2
A1 Ay
— _ <%A%)$2 - _ (Al)af,‘g
A1As Ay
Similar computation gives the coefficients p;; and g;;:
(5.3.1)
o maoey (0 oy
P=|-Wu g ) Q=Y g i
(451 [411 0 bip Lo 0
A As A As

To get the Gauss-Codazzi equation of the surface parametrized by
an orthogonal coordinates we only need to compute the 21-th, 31-th,
and 32-the entry of the following equation

(P)m - (Q)m = [P7 Q])
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and we obtain

o (A1)ay [ (A2)ay 2511522—@2
Az Ax - A1As 0

T2
‘ ‘ l12(A2)e l22(A1)a
(5.3.2) <L11>x2 — (ﬁ)xl — 1214122 Ly b A%l 2
(47 _ [ f2 _ ta(A2)ey bi2(Ar)ay
A2 ), A2 ) A2 A1 Ay
The first equation of (5.3.2) is called the Gauss equation. Note that

the Gaussian curvature is

K — gll£22 - 6%2

(A1 Az)?
So we have
(Al)zg (AQ)Il
(533) K= ( A2 >$2+< A >x1
o B A1 Ay '

We have seen that the Gauss-Codazzi equation becomes much sim-
pler in orthogonal coordinates. Can we always find local orthogonal
coordinates on a surface in R®? This question can be answered by the
following theorem, which we state without a proof.

Theorem 5.3.1. Suppose f : O — R?® be a surface, xy € O, and
Y1, Yy : O — R? smooth maps so that Yi(xy),Ys(z0) are linearly in-
dependent and tangent to M = f(O) at f(x¢). Then there exist open
subset Oy of O containing xq, open subset Oy of R?, and a diffeomor-
phism h: O1 — Oy so that (f oh),, and (f oh),, are parallel to Yy oh
and Yy 0 h.

The above theorem says that if we have two linearly independent
vector fields Y7, Y5 on a surface, then we can find a local coordinate
system ¢(y1,y2) so that ¢,,, ¢,, are parallel to Y7, Y5 respectively.

Given an arbitrary local coordinate system f(xy,z3) on M, we apply
the Gram-Schmidt process to f;,, fz, to construct smooth o.n. vector
fields eq, es:

[
€1 = —,
V911
oy = \/gll(f:tg - ZlTifxl)

Vv 911922 — 9%2

By Theorem 5.3.1, there exists new local coordinate system f (y1,92)
so that g—gfl and % are parallel to e; and e;. So the first fundamental
form written in this coordinate system has the form

Gudyt + Gaodys.
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However, in general we can not find coordinate system f (y1,y2) so that
e; and es are coordinate vector fields g—;l and g—y}; because if we can

then the first fundamental form of the surface is I = dy? + dy3, which
implies that the Gaussian curvature of the surface must be zero.

5.4. Line of curvature coordinates.

Suppose M is an embedded surface in R?, f: O — U C M a local
coordinate system, and py = f(2°) is not an umbilic point. This means
that the shape operator dN,, has two distinct eigenvalues. Since dN is
smooth, there exists an open subset Oy of O containing z° so that f(z)
is not umbilic for all x € Oy. We can use linear algebra to write down a
formula for two eigenvectors vy, vy of dN on Oy and see that vy, vy are
smooth on Oy. Since dN,, is self-adjoint with distinct eigenvalues, vq
and v, are perpendicular. By Theorem 5.3.1, we can change coordinates
so that the coordinate vector fields are parallel to v; and vo. This means

that we may change coordinates f : 0, — U, C M C R3 so that g—i

and g—y’; are parallel to vy, vy respectively. In this new coordinates,

§12:fy1 'fyz =0

because vy - vy = 0. But since (f),, and (f),, are in the principal direc-
tions, the shape operator is diagonalized with respect to this eigenbasis.
Hence

512 == 0

In other words, both I,II are diagonalized. We call such coordinates
line of curvature coordinates.
Therefore we have proved

Theorem 5.4.1. If M C R3 is an embedded surface and py € M is
not umbilic, then there exists a local line of curvature coordinate system
f:O0—=UCM C near py, t.e.,

gl2:fx1'fx2:()7 612:][‘1‘112']\7:0’
or equivalently,

Theorem 5.4.2. Suppose f(x1,x2) is a local line of curvature coordi-
nate system on an embedded surface M in R3 with I, 11 as in Theorem
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5.4.1. Then the Gauss-Codazzi equation is

(A1)z, (A2)z, Ul
(5.4.1) ( A ), + A ). =T,
(1 (A1),
(5.4.2) (A_) —
la2 _ 111(Ag)y,
(5.4.3) (A_) — fulds

Proof. This theorem can be proved either by substituting /1, = 0 into
(5.3.2) or derive directly. But we will derive it directly. Let ey, eq,e3
be the o.n. basis so that

_u  _m

e = , €y = , e3=2N,
S 2=, 3
and (€;)q, - €; = Pji, (€i)zy - €5 = ¢ A direct computation gives
( (A1) 14
2 Az ? _ALi
(e1,€2,€3)s, = (e1,€2,€3) —% 0 1.
a 0 0
0.4.4 A
(5.4.4) TR
(€1, €2,€3)z, = (€1, €2, €3) % 0 —%
¢
\ 0 b g

The Gauss-Codazzi equation is P,, — Q,, = [P, Q]. Since P, (Q are skew
symmetric, we get 3 equations (the 12, 13, and 23 entries) as stated in
the theorem. 0

6. Surfaces in R? with K = —1

We will show that there exists line of curvature coordinates f(z,y)
so that the angle u between asymptotic lines satisfies the sine-Gordon
equation (SGE):

Ugg — Uyy = SINU.

In fact, we prove that there is a one to one correspondence between
local solutions u of the SGE with Im(u) C (0,7) and local surfaces in
R? with K = —1 up to rigid motions. We also prove
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(1) the classical Béacklund transformations that generate infinitely
many surfaces of K = —1 in R? from a given one by solving a
system of compatible ODEs.

(2) the Hilbert Theorem that there is no complete K = —1 surfaces
in R3.

6.1. K = —1 surfaces in R? and the sine-Gordon equation.

Suppose M be a surface in R?® with K = —1, and )\, Ay are the two
principal curvatures. Since K = A\Ay = —1, Ay # )Xo, i.e., there are no
umbilic points. Hence we can find local line of curvature coordinates
f(zq,29) on M. Assume the fundamental forms are

Then the prinicpal curvatures are

(11 loo
AN =—, A= —.
1 A% P 2 Ag
But A\ Ay = —1, so we may assume that there exists a smooth function
q so that
)\:@:tanq /\:@:—cotq
1 A% ) 2 A% )
ie.,
12 12
(6.1.1) ALi = A, tang, Aij = —A,cotq.

Since Ay, A, {11, lo satisfy the Gauss-Codazzi equation, substitue (6.1.1)
to the Codazzi equations (5.4.2) and (5.4.3) to get

(A1 tang)y, = —cot q (A1),
(—Ascot q)y, =tanqg (Az),,-
Compute directly to get
(A))a, tang + Ay sec® ¢ qp, = —cot q (A1)a,,
which implies that
(tan g + cot q)(A1)z, = —A1(sec? ) qa,.

So we obtain _
(Al)zy _sing .
Ay cosq %
Use a similar computation to get

(A2) 4, _cosq

Az, -

Ay sin ¢
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In other words, we have

(log A1)y, = (logcosq)s,, (logAs)., = (logsingq),,.
Hence there exist ¢;(z1) and co(z9) so that
log A1 =logcosq + ¢1(x1), log Ay =logsing + ca(xs),
ie.,
A = e cogq, Ay = e ging.

Because 1 is positive definite, A;, As never vanishes. So we may as-
sume both sing and cosq are positive, i.e., ¢ € (0,5). Now change
coordinates to (Z1(z1),Z2(x2)) so that

dz, — pci(z1) @

el — ec2(x2)
dl’l ’ d.Z'Q c

Since

of _ 0f 9z, _ Of S

(9:}:1 8301 @5:1 8:151 ’
|| fz,]| = cosq. Similar calculation implies that ||fz,|| = sing. Since
Z; is a function of z; alone, f;, is parallel to f,,. So (Z1,Z2) is also a
line of curvature coordinate system and the coefficients of 1T in (%1, Z»)
coordinate system is

511 = tanqcos® ¢ = sinqcosg, (722 = —cotgsin®q = —singqcosq.
Therefore, we have proved part of the following Theorem:

Theorem 6.1.1. Let M? be a surface in R® with K = —1. Then locally
there exists line of curvature coordinates x1,xy so that

(6.1.2) I=cos®’q dx? +sin’q dr3, 1l =singcosq (da? — dx3),

where 2q 1s the angle between two asymptotic directions. Moreover, the
Gauss-Codazzi equation is the sine-Gordon equation

(6.1.3) Gy, — Quozs = SINQ COSQ.
Proof. Tt remains to compute the Gauss-Codazzi equation. Let

Ja _ Ja _ Jar X Jas
g7 . _JT 7 JT2

= = €3 = = .
cosq’ °  sing’ ° I for X faull

el =

Write

(617 €2, 63)1‘1 - (617 €2, 63)P7 (617 €2, 63)%2 - (617 €2, 63)Q'



62 CHUU-LIAN TERNG!

We have given formulas for P,Q in (5.4.4) when (z1,25) is a line of
curvature coordinate system. Since A; = cosq, A; = sing, and {1, =
—/{99 = sin g cos ¢, we have

(6.1.4)
0 —q., -—sing 0 —Qay 0
P=1 g, 0 0 , Q=19 0 cos ¢
sing O 0 0 —cosq O

A direct computation shows that Codazzi equations are satified auto-
matically, i.e., the 13 and 23 entries of P,, — ()., are equal to the 13
and 23 entries of [P, Q)] respectively. The Gauss equation (equating the
12 entry) gives
—Quozy T Quyzy = sin q Ccosg.
Since 1T = sin g cos ¢ (dz? — dz3), fu, * f, are asymptotic directions.
Use I to see that f,, = f,, are unit vectors. Since

the angle between the asymptotic directions f,, + f., and f;, — f, is
2q. 0
A consequence of the proof of the above theorem is

Corollary 6.1.2. Let P,Q be as in (6.1.4). Then system

(617 €2, 63)11 = (61, €2, 63)P7 (617 €2, 63)232 = (617 €2, 63)@
is solvable if and only if q satisfies the SGE (6.1.3).

Let O(3) denote the space of all orthogonal 3 x 3 matrices, and o(3)
the space of all skew-symmetric 3 x 3 matrices. A map g : R? — O(3)
is smooth if i o g : R? — ¢l(3) is smooth, where i : O(3) — ¢l(3) is the
inclusion.

It follows from the Fundamental Theorem of surfaces and Corollary
6.1.2 that The converse of Theorem 6.1.1 is true :

Theorem 6.1.3. Let ¢ : O — R be a solution of the SGE (6.1.3),
po € R3, (29, 29) € O, and uy, ug, uz an o.n. basis. Let P,Q : O — o(3)
be the maps defined by (6.1.4). Then there exists an open subset Oy of
(29, 29) in O and a unique solution (f, ey, ez, e3) : O — R3 x O(3) for

the following system
((61762763)11 = (61762763)137
(e1, €2, €3)s, = (1, €2,€3)Q,
(6.1.5) fur = cosq e,
fon =sing e,
0 0

\f(x(l)v'rg) = Do, 61<x?,.§l}2) = Uy, 62(«'17(1),372) = U2.
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Moreover, if sinqgcosq > 0 on Oy, then f(O1) is an immersed surface
with K = —1 and the two fundamental forms are of the form (6.1.2).

In other words, there is a 1-1 correspondence between solutions ¢
of the SGE (6.1.3) with Im(¢) C (0,%) and local surfaces of R* with
K = —1 up to rigid motion.

Let f(x1,x2) be a local line of curvature coordinate system given in
Theorem 6.1.1 of an embedded surface M in R? with K = —1, and
q the corresponding solution of the SGE (6.1.3). The SGE is a non-
linear wave equation, and (x1,x9) is the space-time coordinate. We
have proved that f,, £ f,, are asymptotic directions. If we make a
change of coordinates ©1 = s +t, o = s — t, then f, = f,, + f., and
ft = foy — fuo- A direct computation shows that the two fundamental
forms written in (s,t) coordinates are

I = ds? + 2 cos 2q dsdt + dt?,
IT = sin 2q ds dt,

and the SGE (6.1.3) becomes
(6.1.7) 2, = sin(2q).

A local coordinate system (z,y) on a surface f(z,y) in R? is called
an asymptotic coordinate system if f,, f, are parallel to the asymptotic
direction, i.e., 17 = f95 = 0. Note that the (s, t) coordinate constructed
above for K = —1 surfaces in R? is an asymptotic coordinate system
and s, t are arc length parameter. This coordinate system is called the
Tchbyshef coordinate system for K = —1 surfaces in R3.

(6.1.6)

6.2. Moving frame method.

If P,Q are skew-symmetric, then so is [P, Q] = PQ — QP because
(PQ-QP)' = Q'P'—P'Q" = (-Q)(-P)—(-P)(-Q) = —(PQ-QP).
We use Cartan’s method of moving frames to derive the local theory

of surfaces in R?. This method uses differential forms instead of vector
fields to derive the Gauss-Codazzi equation.

Proposition 6.2.1. Let O be an open subset of R?, and P = (p;;),Q =
(¢ij) smooth maps from O to o(3). Let w;; = p;jdxi + q;jdxs. Then the
following statements are equivalent:

1 — Pa .
(i) {g v =9 is solvable,

G, = 9@Q
(11) _PJCQ + Qm1 = [Pv Q];
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(iii)
3
(6.2.1) dwij ==Y wip A w;
k=1

Proof. The equivalence of (i) and (ii) is given by Corollary 2.4.2. It
remains to prove (ii) if and only if (iii). A direct computation gives

dwi; = d(pidry + qijdzs) = (=(pij)as + (¢ij)ar) dx1 A drg,  and
— Z Wi, N Wrj = — Z(pu@d% + qirdxa) N (prjdry + qrjdas)
P P

= - Z(pikaj — Qikprj)dry A dxg
A

= —[P, Q]ijdxl A\ dl’g.
So (ii) and (iii) are equivalent. O

We introduce some notations. Let w;; be 1-forms for 1 <,5 < 3.
Then w = (w;;) is called a gl(3)-valued 1-form. Let 7 = (7;;) be a gl(3)-
valued 1-form. Let 7 A w denote the gl(3)-valued 1-form whose ij-th
entry is 35, Tix Awy;. Use matrix notation, (6.2.1) can be written as

(6.2.2) dw = —w A w,

which is called the Maurer-Cartan equation.

Once we get used to computations involving matrix valued maps and
differential forms, we can obtain the Maurer-Cartan equation easily as
follows: Because w = g~ 'dg, we have

dw =d(g7)Ndg + g 'd(dg) = —g 'dg g7 Adg +0 = —w A w,
i.e., w satisfies (6.2.2).

Since w;; = —wj;, w; = 0. So (6.2.1) becomes
dwiz = —wi3 A\ waz,
(623) d’UJ13 = —wi2 A\ Wa3s,
dwyz = —wa N w13,

Lemma 6.2.2. Cartan’s Lemma If 6,, 60, are linearly independent 1-
forms on an open subset O of R? at each point of O, then there exists
a unique 0o satisfies

{d91 = —012 N\ 0y,

6.2.4
( ) dfy = —091 N 0y,

where 012 + 921 =0.
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Proof. Suppose 0; = A; de+ B; dy with i = 1,2, and 615 = p dz+q dy.
Then (6.2.4) implies that

—pBy + qAs = —(A1)y + (B1)a,
(6:2.5) {PBl —qA1 = —(A2)y + (Ba)e.

Since 01, 0, are linearly independent at every point, A; By — As By # 0.
So the linear system (6.2.5) has a unique solution p, g. O

Let f: O — U C M be a local coordinate system of the embed-
ded surface M in R3. When we view f as a map from O to R3, the
differential of f is

df = fe,dzy + fr,dzs.

Let m; : M — R3 be the function defined by 7;(y1, 92, y3) = ;. The
differential

(dm:) y(q) = d([i)g-

Let m = (my, 7o, m3) : M — R3. Then 7 is the inclusion map, and

dmpg) = dfy = fe,dx1 + fr,dzs.

Since dxq,dxy are 1-forms dual to the basis f,,, f., of TM, the re-
striction of dm to each T'M, is the identity map. Suppose e;,ey are
smooth orthonormal vector fields of M defined on f(O), and wy, wy
are dual 1-form on M, ie., w;(e;) = 6;;. Since df, = dmy( is the
identiy map, by Corollary 3.1.7 we have

df = 01e1 + Ozes.
Let e3 = N be the unit normal vector field. Set
(6.2.6) wy; =de;-ej, 1<14,5<3.
Let g = (e, €2, €3). Rewrite (6.2.6) as
dg = gw.
Differentiate e; - e; = d;; to get
w;; + wj; = 0,

i.e., w = (w;) is a o(3)-valued 1-form. The Gauss-Codazzi equation is
the compatibility condition for dg = gw. So it follows from Proposition
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6.2.1 that the Gauss-Codazzi equation for M is the Maurer-Cartan

equation dw = —w A w. Since w; = 0, the Maurer-Cartan equation is
dwiz = —wiz A wsz,

(627) dw13 = —wi2 A Wa3,
dw23 = —wso N\ Wi3.

Differentiate df = wie; + weey to get
0 = d(df) = dwye; — wy A dey + dwaes — wa A dey
= dwye; — wy A (wareg + wsrez) + dwges — wy A (wizeq + wsges)
= (dwy — wy N wrg)er + (dwg — wy A war)es — (wy A wszy + wa A wss)es.

So we have
(6.2.8)
(dw1 — Wo A 'LU12)€1 + (dw2 — W1 A 1U21)€2 — (U)l N W31 + Wa A U)32)€3 =0

The coefficients of ey, e5 are zero imply that

dwy — A =0
(6.2.9) W At =
dw2 — W VAN Wo1 = O,
where wiy = —wy;. Equation (6.2.9) is called the structure equation.

It follows from the Cartan Lemma 6.2.2 that wqo can be computed in
terms of wy, wy. But the first fundamental form is

I =w ® w + we ® ws.

So this proves that wis only depends on 1.
The coefficient of ez in equation (6.2.8) is zero implies that

(6.2.10) wy A wsy + we A wsy = 0.
Write
w3y = hyywy + higwy,  wsy = hoywy + haows.
Then (6.2.10) implies that
hiawi A wy + hojwe A wy = 0.

So hia = hop. The shape operator is

—dN = —d€3 = —(w1361 —I— w2362> = W31€1 —|— W3z9€y = E hijwiej.
1j

Because €1, e5 are orthonormal, hi1o = hg; means that dV is self-adjoint.
This gives a proof of Proposition 3.3.1 via differential forms.
By definition of II, we see that

II = Z hle X wy,

ij
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The mean and the Gaussian curvature are
H = hy + hyy, K = hyihy — h,.
The first equation of the Gauss-Codazzi equation (6.2.3) is

dwig = —wiz A wyy = wyy A wsy = (hiywy + higws) A (higwy + hogws)

= (h11h22 — h%Q)wl A Wy = le N Wa.
So we have

dU}lQ = le A wa.

But we have proved that wiy can be computed from wq,ws. So K

depends only on I. This gives another proof of the Gauss Theorem
5.2.1 using differential forms.

We summerize Cartan’s moving frame method. Let M be an em-
bedded surface in R3, e;, e, be a local o.n. tangent frame on an open
subset U of M, and wy, ws the dual 1-form. Let es be the unit normal
field on M, and

wij:dej-ei, 1§Z,j§3

Then:
(1) The first and second fundametnal forms of M are
I =w?+ w3,
II = w; ® w31 + wy @ was.
(2) w1, ws, w;; satisfy the structure equation
dw; = —wia A
(6.2.11) 1= T A,
dUJQ = —W21 A wi.
and the Gauss and Codazzi equation
dwiz = —wiz A w3,
(6212) dw13 = —Wi2 N\ Was,
dw23 = —W21 A Wa3.

(3) Write ws; = hjywy + higws. Then h;; = hj;, hence II is symmet-
ric.
(4)
(6213) d’wlg = —W13 A W3y = le A wa.
(5) wqz only depend on I and can be solved using the structure

equation (6.2.11) and the Gaussian curvature K can be com-
puted using I, namely

dw12 = le ATIOR
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Next we state the Fundamental Theorem of surfaces in R? in terms
of differential forms. Given two symmetric bilinar forms

1= Z gz‘jdﬂfidfj, II = wadﬂfzdI]
ij ij
on an open subset O of R? such that I is positive definite. First, we
complete the square for I to get an orthonormal dual 1-form:

2 2
I=gn (dﬁﬁ + @d@) - gnge — 91z das.
g11 g1

Then I = w} + w3, where

/ 9
w1 = /911 (d$1 + g12 dI2> ,  Wo = gungz = 91 dz,.
g11 g11

Let w2 be the unique 1-form satisfies the structure equation (use the
proof of Cartan’s lemma to find the formula of wjy). Note that ws
and w3y can be solved algebraically by writing

II = Z&j dl’ld.%] = w1 @ w31 + Wr X Wsa.
tj
Suppose wy, wy, w;; satisfy the structure (6.2.11) and Gauss-Codazzi
equation (6.2.12). Then given ¢y € O, py € R?, and an o.n. basis
w1, ug, uz of R?, we claim that there exists a unique solution (f, 1, €2, €3)
for

df = wieq + waeq,
(6.2.14) de; =30 wyie;, 1<i,j<3,
(f,e1,e2,€e3)(q) = (po, w1, uz, us).

with initial data (po,u1,us,us). To prove the claim, we only need to
check the compatibility condition. Note that solvability of the first
equation of (6.2.14) is d(wie; + wqez) = 0, which is the structure
equation (6.2.9). The solvability of the second equation of (6.2.14)
is the Gauss-Codazzi equation. This proves the claim.

We give an example using Cartan’s moving frame method below:

Theorem 6.2.3. Hilbert Theorem for K = —1 surfaces in R?
Suppose M is a surface in R with K = —1 given by an entire Tchebyshef
asymptotic coordinate system (s,t), i.e., there is a coordinate system
f:R? — R3 with f(R?) = M so that the first and second fundamental
forms are of the form (6.1.6). Then the area of M is less than 2.
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Proof. We have proved that I = ds? + 2cos2q dsdt + dt?. Complete
square to get an o.n. dual 1-forms:

[ = (ds + cos 2q dt)? + (sin 2qdt)?.
Let
wy = ds + cos2q dt, we = sin2qdt.
We use the structure equation (6.2.11) to compute wio. Let

Wi = Ads + Bdt.

Structure equation (6.2.11) implies that

pary e A
So A=2q,and B=0, i.e.,

Wiy = 2q,ds.
The Gauss equation is dwia = Kw; A wsy, so we have

(6.2.16) dwiy = —wy A wy = —singcosq ds A dt.
The area of M is

Area(M) = // wy A\ wy = // (ds + cos2q dt) A sin2q dt
R? R2
= / / sin2q dsdt by (6.2.16)

= / / —dwyz, by the Green's formula (4.3.2)

= lim/ / —wip = — lim ]{Qqsds

= —2 lim qs(s, —r)ds —|—/ qs(s,r)ds

r—00
—r

= _QTILI?O(Q(Ta —T‘) - Q(_rv _T)) + <Q(—T', T) - Q(T, T))
Since I is positive definite, 1 — cos?2q = sin?2¢ > 0. We may assume
2q € (0,7). So the above equation implies that the area of M is less
than 27. ]
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6.3. Backlund Theorem.

The idea of Béacklund transformations comes from the study of line
congruences. A line congruence in R? is a two-parameter family of
lines

L(u,v): x(u,v)+7&(u,v), —oo<T <00,
i.e., L(u,v) is the line through z(u, v) and parallel to {(u,v). A surface
M given by
Y (u,v) = x(u,v) + t(u,v){(u,v)
for some smooth function t is called a focal surface of the line congru-
ence if the line L(u,v) is tangent to M at Y (u,v) for all (u,v). Hence
&(u,v) lies in the tangent plane of M at Y (u,v), which is spanned by

Yu :xu+tu£+t§ua K} :xv+tv£+t§v-

Note that vy, v9, v3 are linearly dependent if and only if det(vy, ve, v3) =
0. So t satisfies the following quadratic equation:

det(&, xy + tué + t&y, Ty + t,€ + t&,) = 0.
This implies
0 = det(&, y + t&u, Ty + &)
— 2 det(€, €4, £,) + HACH(E, €4, 1) + det(E, T4, £)) + det(€, 7, 7)

Note that x, £ are given and the above equation is a quadratic equation
in t. In general, this quadratic equation has two distinct solutions for
t. Hence generically each line congruence has two focal surfaces, M
and M*. This results in a diffeomorphism ¢ : M — M* such that the
line joining p and p* = ¢(p) is tangent to both M and M*. We will call
¢ also a line congruence.

A line congruence ¢ : M — M* is called a Backlund transformation
with constant 6 if the angle between the normal of M at p and the
normal of M* at p* = {(p) is € and the distance between p and p* is
sinf for all p € M. We restate the definition below:

Definition 6.3.1. Let M, M* be two surfaces in R3. A diffeomorphism
¢ M — M~ is called a Bdacklund transformation with constant 6 if for
any P € M,
(1) the line joing P and P* = ((P) is tangent to M at P and to
M* at P* respectively,
(2) the distance between P and P* is sin 6,
(3) the angle between the normal Np of M at P and Nj. of M* at
P* is equal to 6.

In 1883, A. Bécklund proved:
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Theorem 6.3.2. Backlund Theorem. Let M and M* be two sur-
faces inR3. If ¢ : M — M* is a Bécklund transformation with constant
0, then both M and M* have Gaussian curvature —1.

Proof. Let e; denote the unit vector field on M so that

{(p) = p+sind e;(p)

for all p € M. Let e; be the unit vector field tangent to M that is

perpendicular to e;, and e3 = N the unit normal vector field on M.

Then ey, ey, e3 is a local o.n. frame on M. Let e}, el be the tangent
—

o.n. frame on M* so that ef = —e; (the direction of £(p)p), and €} is
the unit normal of M*. By assumption, the angle between e3 and ej is
6. So the two o.n. frames are related by

61 — —61,
e = cos feg + sin feg,

e5 = —sinfey + cos fes.

Let (wi;) and (wj;) be the so(3)-valued 1-form computed from
(6.3.1) de; = waiej’ de; = Zw}‘ie;f.
J J

Let f: O — R? be a local parametrization of M, then
ff=f+sinf e

is a local parametrization of M*. Let wi,ws be the dual coframe of
e1, ea, and wj, w; the dual coframe of e}, e5. So we have

(6.3.2) df = wie; + wseo, df* = wiel +wje;.
The relation of these dual coframes can be computed by differentiating
f and f*:
df* = wye] + wie;
= —wje; + wj(cosfey + sinfez) = d(f + sinb e;)
=df +sinf de; by (6.3.2) and (6.3.1)
= wie; + waeg + sin @ (wo1eo + wse3).
Compare coefficients of ey, es, e3 of the above equation to get
(6.3.3) wy = —wy,
(6.3.4) ws cos = wy + sin 0 woyy,
(6.3.5) wh = ws;.
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So we have
(6.3.6) w31 oS @ = wy + sin 6 woy.

Use dej - e; = wj; to compute
(6.3.7)
wy, = de}-ey = —dey - (—sinfeg+cos feg) = sin fwgy — cos bwz; = —ws.

Here we use (6.3.6). We also have

w3y = deb - €5 = (cos Odey + sin Odeg) - (— sin feg + cos fes)

(6.3.8) = cos? Qwsy — sin? Qwes = wss.

Let ws; = Zj hijw;, and K, K* the Gaussian curvature of M and M*
respectively. Use (6.2.13), (6.3.7) and (6.3.8) to get

* * * * *
K w] AN w; = wa; A wsy = —wa A wsy = hijgwy A we

= —K*wl N W31 = —K*h12w1 N wy.

This implies that —K*hqo = h1o. Hence K* = —1. Since the situation
is symmetric, K = —1 too. 0

Theorem 6.3.3. Given a surface M in R3, a constant 0 < 0 < 7, and
a unit vector vy € T'M,, not a principal direction, then there exists a
unique surface M* and a Backlund transformation ¢ : M — M* with

——
constant 0 such that pol(po) = (sin 0)vy.

Proof. To construct a Backlund transformation ¢ with constant 6 is the
same as to find a unit vector field e; on M so that the corresponding
frames w; and (w;;) satisfy the equation (6.3.6). We can rewrite this
differential form equation as a system of first order PDE as follows.
Let vy,v9,v3 be a local o.n. frame on M so that vy, v, are principal
directions. Let (z1,x2) be the local line of curvature coordinates con-
structed in Theorem 6.1.1, and ¢(xy, z5) the corresponding solution of
the SGE (6.1.3). We know from the proof of Theorem 6.1.1 that

01 = cosq dxy, 6y =sing dx,

are the 1-forms dual to vy, vs, and 0;; = dv; - v; = pi;dry + gijdzs is
given as follows:

812 - _Q$2d'r1 - q:v1dx27

013 = —sinq dxq,

O3 = cos q dxs.
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Let ¢* denote the angle between v; and e;, and ey, e5, e3 an o.n. frame
on M so that e3 = v3, i.e.,

e1 = cosq* vy + sing* vo,
(6.3.9) ey = —sing* vy + cos ¢* vy,
es = vs.
Let w;; = de; - e;. Use (6.3.9) to get
wz1 = dey - e3 = (cos ¢ dvy + sing” dvg) - v3 = cosq* 031 + sinq* O3
= cosq" sing dx; —sing® cosq dz,,
wy = —sing” 6y + cosq* Oy = —sing* cosq dxy + cosq” singq dws,
wyy = dey - ey = dq* + by = dq* + G, dr1 + @, dxo.
Equate the coefficients of dz; and dzy of equation (6.3.6) to get
(6.3.10) {— sin q’i cos q —|— sin0((¢*)z, + ¢a,) = cos 6098 g*sinq,
cos ¢*sing + sin 0((¢* ), + ¢z,) = — cos @ sing* cosq.
Now we make a change of coordinates:
T1 =8+t To=s5—1,
i.e., (s,t) is the Tchebyshef asymptotic coordinate system. Note that
Us = Ugy + Ugy, Up = Uy — Ug,y-

Add and substract the two equations of (6.3.10) and use (s,t) coordi-
nates, we see that (6.3.10) gives

sinf (¢* + q)s = (1 — cos ) sin(q* — q),
sinf (¢ — q)¢ = (1 4 cos0) sin(q* + q).

So we have
(¢ + q)s = S525% sin(g" — g),
(¢ — q)s = L5 sin(g" + q)
Let p= 4 sfose Then = 1280 " So the above system becomes
(6.3.11) (q* +q)s = psin(¢” — q),
(¢" — @) = 5, sin(q" + q),
n
ie.,
(6.3.12) (q%)s = —qs + psin(q* — q),
(q%)e = gs + , sin(q* +q).
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To find the unit vector field e; so that ¢ = f + sinfe; is a Backlund
transformation is equivalent to solve the differential form equation
(6.3.6), which is equivalent to solve the PDE system (6.3.12).

By the Frobenius Theorem 2.4.1, the condition for system (6.3.12) to
be solvable is to equate the t-derivative of the first equation of (6.3.12)
and the s-derivative of the second equation of (6.3.12):

((¢")s)e = —qst + pcos(q* —q) (" — q):
= —qq + cos(q¢* — q) sin(¢" +q),

= ((¢")e)s = qst + %COS(Q* +q) (¢ +q)s

= qs + cos(q¢" + q) sin(¢" — q).
So the compatibility condition is

2qst = cos(q" — q) sin(q¢* + q) — cos(¢" + q) sin(¢" — q) = sin(2qg),
i.e., q satisfies the SGE (6.1.7). O

We use BT, to denote the system (6.3.11) (or (6.3.12)) for given ¢
and constant p. The proof of the above theorem gives a result in PDE.

Corollary 6.3.4. Let i be a non-zero real constant and q(s,t) a smooth
function. Then the system (6.3.11) for ¢* is solvable if and only if q
satisfies the SGE (6.1.7), i.e., 2qy = sin(2q). Moreover, if ¢* is a
solution of (6.3.11), then ¢* is also a solution of the SGE (6.1.7).

The above Corollary also implies that if ¢ is a solution of the SGE
and a real constant p, then the first order system BT, , (6.3.11) is
solvable for ¢* and the solution ¢* is again a solution of the SGE. So
we can solve the system BT, , of two compatible ODE to get a family
of solutions of SGE. If we apply this method again, we get a second
family of solutions. This gives an inifintely many families of solutions
from one given solution of SGE.

For example, the constant function ¢ = 0 is a trivial solution of the

SGE. The system BT, is
Qs = psina,
o = i sin av.
It has explicit solution

afs,t) = 2tan™* (e“”i t) :

We can apply Bécklund transformation BT, ,, to this new solution «
to get another family of solutions. Note that this two system of ODEs
are not as easy to solve as BTy ,. But instead of solving BT, ,, we
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can use the following classical Bianchi’s theorem, which says that the
second family of solutions can be constructed from the first family of
solutions by an explicit algebraic formula:

Theorem 6.3.5. Bianchi Permutability Theorem.

Let 0 < 61,0y < 7 be constants so that sin 2 # sin 03, and {; - My — M;
Bdacklund transformations with constant 6; for © = 1,2. Then there
exists a unique surface Ms and Backlund transformations 0y My —
Ms and 572 - My — M3 with constant 61,0y respectively so that ZI ofly =
U5 0 0y. Moreover, if ¢; is the solution of the SGE corresponding to M,
for 0 <1 < 3, then

(6.3.13) tan (CJ3 - QO) _ Mt pe tan <91 - Q2> ’

2 p1 — 2 2

1—cos 6;
sin@;

where p; =

The proof of the geometric part of the above theorem is rather long
and tidious (cf. []). But to prove that the function ¢3 defined by
(6.3.13) solves the system BT, ,, and BT, ,, can be done by a di-
rect computation. Equation (6.3.13) gives a formula of g3 in terms of
do, 41, 92- )

When ¢y = 0, we have solved ¢; = 2tan™! et for § = 1,2. So
apply (6.3.13) get a second family of solutions:

s L s+ L
(6314) tanquﬂl‘i_,uQ ( e'u’l +,u1t_6li2 +H2t )

2 p—p2 \ 14 e(u1+u2)8+(ﬁ+£)t

Apply (6.3.13) again, we get a third family of solutions. To be more
precise, let pi1, pi2, pt3 be real numbers so that u?, p3, u3 are distinct, gz
the solution defined by (6.3.14), and go3 the solution given by the same
formula (6.3.14) replacing pi1, 2 by g, 3. Then

G123 M1+ [3 q12 — 423
tan = tan { ——— | .

2 P — 3 2
We can continue this process to construct an infinitely many families
of explicit solutions of the SGE.
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