
LECTURE NOTES ON CURVES AND SURFACES IN R3

CHUU-LIAN TERNG1

Preliminary version and in progress, April 2, 2003

Contents

1. Introduction 1
2. Curves in R2 and in R3 2
2.1. Some results from ODE 3
2.2. Curves in R2 5
2.3. Space curves 9
2.4. Frobenius Theorem 13
2.5. Smoke-ring equation and the non-linear

Schrödinger equation 15
3. Surfaces in R3 21
3.1. Some linear algebra 21
3.2. Embedded surfaces in R3 25
3.3. The first and second fundamental forms 30
3.4. The Gaussian curvature and mean curvature 34
4. Calculus of variations 38
4.1. Calculus of Variations of one variable 39
4.2. Geodesics 41
4.3. Calculus of variations of two variables 44
4.4. Minimal surfaces 46
5. Fundamental Theorem of surfaces in R3 47
5.1. Gauss-Codazzi equations in arbitrary local

coordinates 48
5.2. The Gauss Theorem 52
5.3. Gauss-Codazzi equation in orthogonal coordinates 55
5.4. Line of curvature coordinates 57
6. Surfaces in R3 with K = −1 58
6.1. K = −1 surfaces in R3 and the sine-Gordon

equation 59
6.2. Moving frame method 62
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1. Introduction

To study a collection of geometric objects, we often proceed as fol-
lows:

(1) Specify a group of “symmetries” that acts on objects, and define
two objects a, b to be equivalent if and only if b = g(a) for some
g in the symmetry group,

(2) Find a complete set of invariants and their relations. This
means that we want to associate to each object a a set of quan-
tities I(a) satisfying certain relations so that
(i) if a and b are equivalent, then I(a) = I(b),
(ii) given a set I satisfies the relations then there exists an

object a unique up to equivalence so that I(a) = I.

One of the simplest examples is the study of triangles in R3 with the
group of rigid motions as symmetry group. Recall that a rigid motion
is a rotation follows by a translation. It follows from plane geometry
that the length of three sides I(a) = {s1, s2, s3} of a triangle a forms
a complete set of invariants and they satisfy the relations (triangle
inequalities and length is positive):

s1 + s2 > s3, s2 + s3 > s1, s1 + s3 > s2, si > 0, 1 ≤ i ≤ 3.

In this series of lectures, we use differential calculus, linear algebra,
and differential equations to study curves and surfaces in R3 with the
rigid motions as symmetry group. For example, for

• the study of curves in R2, the objects are immersed curves in
R2, and the curvature function of a curve is a complete set of
invariants,

• the study of curves in R3, the objects are immersed curves in R3,
and the curvature k and torsion τ of a curve form a complete
set of invariants with condition k > 0,

• the study of surfaces in R3, the objects are immersed surfaces
in R3, and their first and second fundamental forms form a
complete set of local invariants and they must satisfy the Gauss-
Codazzi equations.

These invariants determine the local geometry of curves and surfaces
unique up to rigid motions. One goal of these lectures is to explain the
Fundamental theorems of curves and surfaces in R3. Another goal is to
demonstrate by examples how to construct soliton equations from nat-
ural geometric curve flows and from the Gauss-Codazzi equations for
surfaces whose numerical invariants satisfy certain natural conditions.
The examples we will give are:
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(1) the evolution of local invariants of the evolution of space curves
move in the direction of the binormal with curvature as its speed
is the non-linear Schrödinger equation,

(2) the Gauss-Codazzi equation for surfaces in R3 with K = −1 is
the sine-Gordon equation,

(3) the Gauss-Codazzi equation for surfaces in R3 admitting a con-
formal line of curvature coordinate system is a reduced 3-wave
equation.

2. Curves in R2 and in R3

Let · denote the standard dot product in Rn, and ‖ v ‖ =
√

v · v
the length of v ∈ Rn. In this section, a curve in Rn means a smooth
map α : [a, b] → Rn so that α′(t) 6= 0 for all t ∈ [a, b], i.e., α is an
immersion. The arc length of α from t0 ∈ [a, b] to t is

s(t) =

∫ t

t0

‖α′(t) ‖ dt.

Since ds
dt

= ‖α′ ‖ and α′(t) 6= 0 for all t ∈ [a, b], the function s : [a, b] →
[0, `] is a diffeomorphism, where ` is the arc length of α. So we can
make a change of coordinate t = t(s) (the inverse function of s = s(t)).
Moreover, by the chain rule we have

dα

ds
=

dα
dt
dt
ds

=
α′(t)

‖α′(t) ‖
,

i.e., dα
ds

is a unit vector tangent to α.
A curve α : [c1, c2] → Rn is said to be parametrized by its arc length

if ‖α′(t) ‖ = 1 for all t ∈ [c1, c2]. The above discussion says that any
curve in Rn can be parametrized by its arc length.

2.1. Some results from ODE.

Proposition 2.1.1. Suppose e1, · · · , en : [a, b] → Rn are smooth maps,
and {e1(t), · · · , en(t)} is an orthonormal (o.n.) basis of Rn for all
t ∈ [a, b]. Then

(1) there exists a matrix valued function A(t) = (aij(t)) so that

(2.1.1) e′i(t) =
n∑

j=1

aji(t)ej(t),

(2) aij = e′j · ei.



4 CHUU-LIAN TERNG1

(3) aij + aji = 0, i.e., A(t) is skew-symmetric

Proof. Since e1, · · · , en form an o.n. basis of Rn, e′i(t) can be written
as a linear combination of e1(t), · · · , en(t). This proves (1). Dot (2.1.1)
with ej to get (2). Because ei · ej = δij, the derivative of this equation
implies that e′i · ej + ei · e′j = 0, which proves (3). �

It follows from the definition of matrix multiplication that

(v1, v2, · · · , vn)


x1

x2

·
·

xm

 =
∑

k

xkvk,

where v1, · · · , vn are column vectors. So we can rewrite (2.1.1) in matrix
form

g′(t) = g(t)A(t), where g(t) = (e1(t), · · · , en(t)), A(t) = (aij(t)).

Note the i-th column of A gives the coefficient of of e′i with respect to
the o.n. basis e1, · · · , en.

The following is a special case of the existence and uniqueness theo-
rem for solutions of ODE:

Theorem 2.1.2. (Existence and Uniqueness of ODE) Let I be an
interval of R, U an open subset of Rn, and F : I × U → Rn a smooth
map. Then given t0 ∈ I and p0 ∈ U , there exists δ > 0 and a unique
smooth x : (t0 − δ, t0 + δ) → U so that x is a solution of the following
initial value problem:

(2.1.2)

{
x′(t) = F (t, x(t)),

x(t0) = p0

Let gl(n) denote the space of all n×n real matrices. An n×n matrix
C is called orthogonal if CtC = I. It follows from definition of matrix
product that we have

Proposition 2.1.3. The following statements are equivalent for a ma-
trix C ∈ gl(n):

(1) C is orthogonal,
(2) the column vectors of C are o.n.,
(3) the row vectors of C are o.n..
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Proposition 2.1.4. Suppose A(t) = (aij(t)) is skew symmetric for all
t. If C ∈ gl(n) is an orthogonal matrix, t0 ∈ (a, b), and g : (a, b) →
gl(n) is the solution of

g′(t) = g(t)A(t), g(t0) = C,

then g(t) is orthogonal for all t ∈ (a, b).

Proof. Set y = gtg. We compute the derivative y′ to get

y′ = (gt)′g + gtg′ = (g′)tg + gtg′ = (gA)tg + gt(gA) = Aty + yA.

Since the constant function y(t) = I is a solution with initial data
y(t0) = I, it follows from the uniquness of solutions of ODE (Theorem
2.1.2) that y(t) = I for all t ∈ (a, b). �

Exercise 2.1.5.

(1) For X, Y ∈ gl(n), let (X, Y ) = tr(X tY ). Show that ( , ) is an
inner product on gl(n), and gl(n) is isometric to the Euclidean

space Rn2
with the standard inner product.

(2) Given A ∈ gl(n), prove that

y(t) =
∞∑

j=0

An

n!
tn

converges uniformly on any finite interval [−r, r]. Hence y(t)
is continuous. Prove also that y is differentiable and y is the
solution of the initial value problem:

y′(t) = Ay(t), y(0) = Id.

We will denote y(t) as etA.

(3) Compute etA for A = diag(a1, . . . , an) and for A =

(
0 1
−1 0

)
.

(4) Suppose D is the diagonal matrix diag(d1, · · · , dn), g is an in-
vertible n × n matrix, and A = gDg−1. Show that etA =
getDg−1.
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2.2. Curves in R2.

Let α(t) = (x(t), y(t)) be a smooth curve parametrized by its arc
length. Then e1(t) = α′(t) = (x′(t), y′(t)) is a unit vector tangent
to α at α(t). Note that (−x2, x1) is perpendicular to (x1, x2). Let
e2(t) = (−y′(t), x′(t)). Then e1(t), e2(t) form an o.n. basis of R2. Such
(e1(t), e2(t)) is called a o.n. moving frame along α. Since a 2 × 2
skew-symmetric matrix is of the form(

0 −u
u 0

)
.

It follows from Proposition 2.1.1 that there exists a smooth function
k(t) so that

(e1, e2)
′ = (e1, e2)

(
0 −k
k 0

)
.

In fact, we have
k = e′1 · e2,

and {
e′1 = ke2,

e′2 = −ke1,

The function k is called the curvature of the curve α.

Example 2.2.1. A straight line can be parametrized as α(t) = p0+tu,
where p0 ∈ R2 and u a constant unit vector in R2. Then e1 = u
a constant, and e′1 = 0. Hence the curvature of a straight line is
identically 0. Conversely, if the curvature of a curve β parametrized
by arc length is identially zero, then β must be a straight line. To see
this, note first that e′1 = β′′ = ke2 = 0. Hence e1 is a constant vector,
say u. But (β(t)− tu)′ = e1 − u = 0 implies that β − tu is a constant
p0. So β(t) = p0 + tu is a straight line. So the curvature of a plane
curve measures the deviation of the curve being a straight line.

Example 2.2.2. The circle of radius r centered at p0 is

α(t) = p0 +

(
r cos

t

r
, r sin

t

r

)
.

Since α′(t) =
(
− sin t

r
, cos t

r

)
has length 1, t is an arc length parameter.

A direct computation shows that the curvature is the constant function
1
r
.

The following Proposition says that the curvature is the instantanous
rate of change of the polar angle of tangent of the curve. So when k is
large, the curve winds around faster.
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Proposition 2.2.3. Suppose α(t) = (x(t), y(t)) is parametrized by its
arc length, and θ(t) the angle from (1, 0) to α′(t). Then θ′(t) = k(t).

Proof. Since e1 = α′ = (cos θ(t), sin θ(t)), e2(t) = (− sin θ(t), cos θ(t)).
A direct computation implies that k = e′1 · e2 = θ′(t). �

Note that the tangent line to α at α(t0) gives the best linear approx-
imation to α near α(t0). The best quadratic approximation of α is the
osculating circle. We explain this next.

Definition 2.2.4. The osculating circle at α(t0) of a curve α is the
circle of radius r = 1

k(t0)
centered at α(t0) + re2(t0).

Proposition 2.2.5. Suppose α(t) = (x(t), y(t)) is a plane curve, and
t is the arc length parameter. Then the osculating circle C at α(t0) is
the best second order approximation of α near t0.

Proof. We may assume that t0 = 0, α(0) = (0, 0), α′(0) = (1, 0), and
e2(0) = (0, 1). Let r = 1

k(0)
. Since e′1 = ke2, α′′(0) = 1

r
(0, 1). So the

degree 2 Taylor series of α(t) = (x(t), y(t)) at t = 0 is

(x(0) + x′(0)t +
1

2
x′′(0)t2, y(0) + y′(0)t +

1

2
y′′(0)t2) =

(
t,

t2

2r

)
.

The osculating circle at α(0) = (0, 0) is the circle of radius r centered
at (0, 0) + r(0, 1) = (0, r). So

C(t) = (0, r) + r

(
sin

t

r
,− cos

t

r

)
gives an arc length parameter of the osculating circle at α(0). It is easy
to check that the degree two Taylor series of C(t) at t = 0 is the same
as the one for α(t). �

Theorem 2.2.6. (Fundamental Theorem of Curves in R2)

(1) Given a smooth function k : (a, b) → R, p0 ∈ R2, t0 ∈ (a, b),
and u1, u2 a fixed o.n. basis of R2, there exists a unique curve
α(t) defined in a small neighborhood of t0 so that t is an arc
length parameter, α(0) = p0, α′(0) = u1, and k(t) is its curva-
ture function.

(2) Let α, α̃ : (−δ, δ) → R2 be smooth curves parametrized by arc
length. If α and α̃ have the same curvature function, then there
exists a rigid motion T so that α̃(t) = T (α(t)) for all t.
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Proof. (1) To construct the curve α, we need to solve

(2.2.1)


α′ = e1,

e′1 = ke2,

e′2 = −ke1

with initial data α(0) = p0, e1(0) = u1, e2(0) = u2. Let F : (a, b) ×
(R2)3 → (R2)3 be the smooth map defined by

F (t, y0, y1, y2) = (y1, k(t)y2,−k(t)y3).

It follows from Theorem 2.1.2 that there exists a unique solution with

initial data (y0, y1, y2)(0) = (p0, u1, u2). Since

(
0 −k
k 0

)
is skew-symmetric

and

(y1, y2)
′ = (y1, y2)

(
0 −k
k 0

)
,

it follows from Proposition 2.1.4 that y1(t), y2(t) form an o.n. basis for
each t.

(2) Let e1 = α′, e2 the unit normal for α so that det(e1, e2) = 1, and
ẽ1 = α̃′, ẽ2 the unit normal for α̃ so that det(ẽ1, ẽ2) = 1. By assumption
α and α̃ have the same curvature function k, so both (α, e1, e2) and
(α̃, ẽ1, ẽ2) satisfy the same differential equation

(2.2.2) y′0 = y1, y′1 = ky2, y′2 = −ky1.

Let h denote the constant rotation

h = (ẽ1(0), ẽ2(0))(e1(0), e2(0))−1,

and T the rigid motion

T (v) = α̃(0)− h(α(0)) + hv.

Set β(t) = T (α(t)). Then β(0) = α̃(0) and β′ = he1. Since h is a
rotation, he2 is the unit normal of β and (he1, he2) is a local o.n. frame
along β. By definition of h, we have h(ei(0)) = ẽi(0) for i = 1, 2. But

β′ = he1,

(he1)
′ = h(e′1) = h(ke2) = kh(e2),

(h(e2)
′ = h(e′2) = h(−ke1) = −kh(e1).

So both ã and β are solutions of the following initial value problem:
y′0 = y1,

y′1 = ky2,

y′2 = −ky1,

(y0, y1, y2)(0) = (α̃(0), ẽ1(0), ẽ2(0)).
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By the uniqueness of ODE, β = α̃, i.e., α̃ = T (α). �

Let α : [0, `] → R2 be a smooth curve parametrized by its arc length,
and e1 = α′ and e2 the unit normal. Below we give three classical ways
to generate new curves from α:

(1) The involute of α starting at α(t0) is the curve

βt0(t) = α(t + t0)− te1(t + t0).

Note that if α is a simple close curve, then the involute of α at
α(t0) can be viewed as pulling the thread from a spool of the
shape of α from the point α(t0).

(2) The evolute of a curve α is the locus of the centers of osculating
circles of α, i.e., the evolute is

β(t) = α(t) +
1

k(t)
e2(t).

(3) The curve parallel to α with distance r is

α(t) + re2(t).

Exercise 2.2.7.

(1) Recall that a map T : Rn → Rn is a rigid motion if T is of
the form T (x) = gx + b for some n × n orthogonal matrix g
and b ∈ Rn. Prove that the set of all rigid motions of Rn with
composition as multiplication is a group.

(2) Let α be a curve in R2 parametrized by arc length, k its curva-
ture, and T a rigid motion. Prove that the curvature of β = T◦α
is also k.

(3) Suppose α(t) is not parametrized by arc length, write down the
curvature function in t variable.

(4) Prove that the curve parallel to α with distance r fails to be
an immersed curve at t0 if and only if the radius of osculating
circle at α(t0) is 1

r
. Use 3D-XplorMath to visualize this.

(5) Use 3D-XplorMath Plane curve category to see the involutes of
a curve seem to be all parallel. Use mathematics to either prove
or disprove what you see.

(6) Write down the curve obtained by tracing a fixed point on a
circle of radius a when the circle is rolling along the x-axis with
a fixed speed b. This curve is called a cycloid .

(7) Show that the evolute of the cycloid is a translation of the same
cycloid.
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2.3. Space curves.

Let α(t) be a curve in R3 parametrized by arc length. As for plane
curves, we need to construct a moving o.n. frame e1(t), e2(t), e3(t) along
α such that e1(t) = α′(t). Since the normal space at every point is two
dimension, it is not clear which normal direction should be e2. There
are two natural ways to choose e2. The first is the classical Frenet
frame. Since e1 = α′ has unit length,

(e1 · e1)
′ = 2e′1 · e1 = 0.

So α′′ = e′1 is perpendicular to e1. Assume that α′′(t) never vanishes in
an interval (a, b). Let e2(t) denote the unit direction along α′′(t) and
k(t) the length of α′′(t), i.e., e′1 = ke2. Let e3 = e1 × e2. So {e1, e2, e3}
is an o.n. basis of R3 for all t. By Proposition 2.1.1, there exists a skew
symmetric 3× 3 matrix valued map A(t) so that

(e1, e2, e3)
′ = (e1, e2, e3)A.

Since 3× 3 skew-symmetric matrix must be of the form 0 −f1 −f2

f1 0 −f3

f2 f3 0


and e′1 = ke2, the first column of A must be (0, k, 0)t and there exists
τ so that

(2.3.1) (e1, e2, e3)
′ = (e1, e2, e3)

0 −k 0
k 0 −τ
0 τ 0

 .

Note that τ = e′2·e3. The functions k and τ are called the curvature and
torsion respectively, e2 the normal , e3 the binormal , and (e1, e2, e3) is
the Frenet frame along α. Equation (2.3.1) is called the Frenet-Serret
equation, which can also be written as

(2.3.2)


e′1 = ke2,

e′2 = −ke1 + τe2,

e′3 = −τe2.

Proposition 2.3.1. If the torsion of α is identically zero, then α must
lie in a plane.

Proof. Since τ = 0, the third equation of (2.3.2) implies that e′3 =
−τe2 = 0. Hence e3 = b is a constant vector. The derivative of α(t) · b
is e1 · b = e1 · e3 = 0. So α(t) · b = c0 a constant. �
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So torsion of a space curve measures the deviation of α being a plane
curve.

Theorem 2.3.2. (Fundamental Theorem of curves in R3)

(1) Given smooth functions k, τ : (a, b) → R so that k(t) > 0,
t0 ∈ (a, b), p0 ∈ R3 and (u1, u2, u3) a fixed o.n. basis of R3,
there exists δ > 0 and a unique curve α : (t0 − δ, t0 + δ) → R3

parametrized by arc length such that α(0) = p0, and (u1, u2, u3)
is the Frenet frame of α at t = t0.

(2) Suppose α, α̃ : (a, b) → R3 are curves parametrized by arc
length, and α, α̃ have the same curvature function k and tor-
sion function τ . Then there exists a rigid motion T so that
α̃ = T (α).

Proof. This theorem can be proved in exactly the same way as Theo-
rem 2.2.6 by applying the existence and uniqueness Theorem 2.1.2 of
solution of ODE to F : (a, b)× (R3)3 → (R3)3 defined by

F (t, y0, y1, y2) = (y1, k(t)y2,−k(t)y1 + τ(t)y3,−τ(t)y2).

�

Next we describe parallel frames. Let (e1, ξ1, ξ2) be a smooth o.n.
frame along α such that e1 = α′. Then by Proposition 2.1.1, there exist
three smooth functions f1, f2, f3 so that

(e1, ξ1, ξ2)
′ = (e1, ξ1, ξ2)

 0 −f1 −f2

f1 0 −f3

f2 f3 0

 .

We want to change the o.n. normal frame (ξ1, ξ2) to (v1, v2) so that the
23 entry of the coefficient matrix of (e1, v1, v2)

′ is zero. To do this, we
rotate the normal frame ξ1(t), ξ2(t) by an angle β(t):{

v1(t) = cos β(t)ξ1 + sin β(t)ξ2,

v2(t) = − sin β(t)ξ1 + cos β(t)ξ2.

We want to choose β so that v′1 · v2 = 0. But

v′1 · v2 = β′(− sin β ξ1 + cos β ξ2) · (− sin β ξ1 + cos β ξ2)

+ (cos β ξ′1 + sin β ξ′2) · (− sin β ξ1 + cos β ξ2)

= β′ + (cos2 β ξ′1 · ξ2 − sin2 β ξ′2 · ξ1)

= β′ + f3.

So if we choose β(t) so that

(2.3.3) β′ = −f3,



12 CHUU-LIAN TERNG1

then the new o.n. frame (e1, v1, v2) satisfies

(2.3.4) (e1, v1, v2)
′ = (e1, v1, v2)

 0 −k1 −k2

k1 0 0
k2 0 0

 ,

where
(2.3.5){

k1 = e′1 · v1 = e′1 · (cos β ξ1 + sin β ξ2) = f1 cos β + f2 sin β,

k2 = e′1 · v2 = −f1 sin β + f2 cos β.

The o.n. frame (e1, v1, v2) is called a parallel frame along α. The reason
for the name parallel is because the normal component of the derivative
of the normal vector field vi is zero. The functions k1, k2 are called the
prinicipal curvatures along v1, v2 respectively. However, the choice of
parallel frame is not unique because β only need to satisfy (2.3.3), so
we can replace β by β plus a constant θ0. If we rotate (v1, v2) by a
constant rotation θ0 to (ṽ1, ṽ2), then (e1, ṽ1, ṽ2) is again parallel. But

the principal curvature k̃1 along ṽ1 is

k̃1 = e′1 · ṽ1 = e′1 · (cos θ0v1 + sin θ0v2) = cos θ0k1 + sin θ0k2.

Similar computation gives

k̃2 = − sin θ0k1 + cos θ0k2.

Note that

α′′ = e′1 = k1v1 + k2v2 = k̃1ṽ1 + k̃2ṽ2.

So we have

Proposition 2.3.3. Let α be a curve in R3 parametrized by arc length,
(v1, v2) a parallel normal frame along α, and k1, k2 principal curvature
with respect to v1, v2 respectively. Then α′′ = k1v1 + k2v2.

Corollary 2.3.4. Let (v1, v2) be a parallel normal frame for α, k1, k2

the corresponding principal curvatures, (e1, e2, e3) the Frenet frame, and
k, τ the curvature and torsion of α. Then

(1) there exists β(t) so that v1 = cos β e2+sin β e3, v2 = − sin β e2+
cos β e3, and β′ = −τ ,

(2) k1 = k cos β, k2 = −k sin β.

Proof. Use ξ1 = e2, ξ2 = e3 in the computation before Proposition 2.3.3.
Since f1 = k, f2 = 0 and f3 = τ , equations (2.3.3) and (2.3.5) imply
the Corollary. �

Exercise 2.3.5.
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(1) Find all curves in R3 with constant curvature and torsion.
(2) Find all curves in R3 with constant principal curvatures.
(3) Let α be a curve in Rn parametrized by arc length. Prove that

for generic set of curves α, there exists an o.n. moving frame
(e1, · · · , en) such that

(e1, · · · , en)′ = (e1, · · · , en)P,

where

P =


0 −k1 0 · · ·
k1 0 −k2

0 k2 0 −k3

0 −kn−1

0 kn−1 0


for some smooth functions k1, · · · , kn−1. (So the coefficient ma-
trix for (e1, · · · , en)′ is tri-diangle). This is an analogue of the
Frenet frame for curves in Rn.

(4) Formulate and prove the fundamental theorem for curves in Rn

with the frame given in the above exercise.
(5) Let α be a curve in Rn parametrized by arc length.

(i) Prove that there exists a o.n. moving frame (e1, v1, · · · , vn−1)
such that

(e1, v1, · · · , vn−1)
′ = (e1, v1, · · · , vn−1)P,

where

P =


0 −k1 −k2 · · · −kn−1

k1 0 · · ·
k2 0 · · ·
·

kn−1 0


for some smooth function k1, · · · , kn−1. This is the parallel
frame for curves in Rn.

(ii) Formulate and prove the fundamental theorem for curves
in Rn with the parallel frame.

(iii) Find all curves in Rn with constant principal curvatures.
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2.4. Frobenius Theorem.

Let O be an open subset of R2, and A, B;O×R → R smooth maps.
Consider the following first order PDE system for u : O → R:

(2.4.1)

{
∂u
∂x

= A(x, y, u(x, y)),
∂u
∂y

= B(x, y, u(x, y)).

The Frobenius Theorem gives a necessary and sufficient condition for
the first order PDE system (2.4.1) to be solvable. We need to use this
theorem extensively in the study of curve evolutions and of surfaces in
R3. We will see from the proof of this theorem that although we are
dealing with PDEs, the algorithm to construct solutions of this PDE is
to solve one ODE system in x variable and the solve a family of ODE
systems in y variables. The condition given in the Frobenius Theorem
guarantees that this process produces a solution of the first order PDE.

If the system (2.4.1) admits a smooth solution u(x, y), then the mixed
derivatives uxy = uyx, i.e.,

uxy = (ux)y = (A(x, y, u(x, y))y = Ay + Auuy = Ay + AuB

= (uy)x = (B(x, y, u(x, y))x = Bx + Buux = Bx + BuA.

So A, B must satisfy the compatibility condition:

Ay + AuB = Bx + BuA.

Moreover, this is also a sufficient condition for system (2.4.1) to be
solvable:

Theorem 2.4.1. (Frobenius Theorem) Let U1 ⊂ R2 and U2 ⊂ Rn

be open subsets, A = (A1, . . . , An), B = (B1, . . . , Bn) : U1 × U2 → Rn

smooth maps, (x0, y0) ∈ U1, and p0 ∈ U2. Then the following first order
system

(2.4.2)


∂u
∂x

= A(x, y, u(x, y)),
∂u
∂y

= B(x, y, u(x, y)),

u(x0, y0) = p0,

has a smooth solution for u in a neighborhood of (x0, y0) if and only if

(2.4.3) (Ai)y +
n∑

j=1

∂Ai

∂uj

Bj = (Bi)x +
n∑

j=1

∂Bi

∂uj

Aj, 1 ≤ i ≤ n.

Proof. If u is a smooth solution of (2.4.2), then (ux)y = (uy)x implies
that the compatibility condition (2.4.3) must hold.

Conversely, assume A, B satisfy (2.4.3), we want to solve (2.4.2). We
proceed as follows: The existence and uniqueness of solutions of ODE,
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Theorem 2.1.2, implies that there exist δ > 0 and α : (x0− δ, x0 + δ) →
U2 satisfying

(2.4.4)

{
dα
dx

= A(x, y0, α(x)),

α(x0) = p0.

For each x ∈ (x0 − δ, x0 + δ), let βx(y) denote the unique solution of

(2.4.5)

{
dβx

dy
= B(x, y, βx(y)),

βx(y0) = α(x).

Set u(x, y) = βx(y). By construction, u satisfies the second equation
of (2.4.2) and u(x0, y0) = p0. It remains to prove u satisfies the first
equation of (2.4.2). To prove this, we compute the y-derivative of
z(x, y) = ux − A(x, y, u(x, y)) to get

zy = (ux − A(x, y, u))y = uxy − Ay − Auuy = (uy)x − (Ay + AuB)

= (B(x, y, u))x − (Ay + AuB) = Bx + Buux − (Ay + AuB)

= Bx + Buux − (Bx + BuA) = Bu(ux − A) = Bu(x, y, u(x, y))z.

This proves z is a solution of the following differential equation:

(2.4.6) zy(x, y) = Bu(x, y, z)z(x, y).

But

z(x, y0) = ux(x, y0)− A(x, y0, u(x, y0)) = α′(x)− A(x, y0, α(x)) = 0.

Since the constant function zero is also a solution of (2.4.6) with 0
initial data, by the uniqueness of solutions of ODE (Theorem 2.1.2) we
have z = 0, i.e., u satisfies the second equation of (2.4.2). �

Remark The proof of Theorem 2.4.1 gives an algorithm to construct
numerical solution of (2.4.2). The algorithm is as follows: First solve
the ODE (2.4.4) on the horizontal line y = y0 by a numerical method
(for example Runge-Kutta) to get u(xk, y0) for xk = x0 + kε where ε is
the step size in the numerical method. Then we solve the ODE system
(2.4.5) on the vertical line x = xn for each n to get the value u(xn, ym).

Corollary 2.4.2. Let U0 be an open subset of R2, (x0, y0) ∈ U0, C ∈
gl(n), and P, Q : U0 → gl(n) smooth maps. Then the following initial
value problem

(2.4.7)


gx = gP,

gy = gQ,

g(x0, y0) = C
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has a gl(n)-valued smooth solution g defined in a neighborhood of (x0, y0)
if and only if

(2.4.8) Py −Qx = [P, Q] = PQ−QP.

Proof. This Corollary follows from Theorem 2.4.1 with A(x, y, u) =
uP (x, y) and B(x, y, u) = uQ(x, y). We can also compute the mixed
derivatives directly as follows:

(gx)y = (gP )y = gyP + gPy = gQP + gPy = g(QP + Py),

= (gy)x = (gQ)x = gxQ + gQx = gPQ + gQx = g(PQ + Qx).

So the compatibility condition is

QP + Py = PQ + Qx,

which is (2.4.8). �

2.5. Smoke-ring equation and the non-linear Schrödinger equa-
tion.

In 1906, a graduate student of Levi-Civita, da Rios, wrote a master
degree thesis, in which he modeled the movement of a thin vortex by
the motion of a curve propagating in R3 according to:

(2.5.1) γt = γx × γxx.

It is called the vortex filament equation or smoke ring equation. This
equation is viewed as a dynamical system on the space of curves in R3.

Proposition 2.5.1. If γ(x, t) is a solution of the smoke ring equation
(2.5.1) and ||γx(x, 0)|| = 1 for all x, then ||γx(x, t)|| = 1 for all (x, t).
In other words, if γ(·, 0) is parametrized by arc length, then so is γ(·, t)
for all t.

So for a solution γ of (2.5.1), we may assume that γ(·, t) is parametrized
by arc length for all t. Next we explain the geometric meaning of the
evolution equation (2.5.1) on the space of curves in R3. Let (e1, e2, e3)(·, t)
denote the Frenet frame of the curve γ(·, t). Since γx = e1 and γxx =
(e1)x = ke2, the curve flow (2.5.1) becomes

γt = ke1 × e2 = ke3.

In other words, the curve flow (2.5.1) moves in the direction of binormal
with curvature as its speed. If we use a parallel frame (e1, v1, v2), then
by Corollary 2.3.4

ke3 = k(sin βv1 + cos βv2) = −k2v1 + k1v2.
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So the curve flow (2.5.1) becomes

(2.5.2) γt = −k2v1 + k1v2.

By Proposition 2.3.3, α′′ = k1v1 + k2v2. So the above equation can be
viewed as

(2.5.3) γt = Jt(α
′′) = Jt(k1v1 + k2v2),

where Jt is the rotation of π
2

on the normal plane at α(t). Note that
parallel frame (v1, v2) is not unique. Since α′′ = k1v1 + k2v2 and the
rotation of π

2
in the normal plane is independent of the choice of the

parallel frame, the right hand side of equation (2.5.3) is independent
of the choice of parallel frame.

Next we want to derive the evolution equation of principal curvatures
for γ(·, t) for a solution of the smoke-ring equation. We will show that
they evolve according to the non-linear Schrödinger equation (NLS),
which is the equation models the motion of wave envelope travelling in
an optic fiber:

(2.5.4) qt = i

(
qxx +

1

2
|q|2q

)
. NLS

The NLS is one of the model soliton equations. In particular, the
Cauchy problem with either rapidly decaying initial data or periodic
data have long time existence, and there are infinitely many explicit
soliton solutions.

In 1970’s, Hasimoto showed that if γ is a solution of the smoke-ring
equation (2.5.1), then q = k exp(

∫
τdx) is a solution of the NLS. We

explain the equivalence between the smok-ring equation and the NLS
below.

Suppose γ is a solution of (2.5.1). Choose a parallel frame

(e1, v1, v2)(·, t)

for each curve γ(·, t). Let k1(·, t) and k2(·, t) denote the principal cur-
vatures of γ(·, t) along v1(·, t) and v2(·, t) respectively. So we have

(2.5.5) (e1, v1, v2)x = (e1, v1, v2)

 0 −k1 −k2

k1 0 0
k2 0 0
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We want to compute the evolution of (e1, v1, v2), i.e., (e1, v1, v2)t. We
first compute

(e1)t = (γx)t = (γt)x = (−k2v1 + k1v2)x

= −(k2)xv1 − k2(v1)x + (k1)xv2 + k1(v2)x, by(2.5.5)

= −(k2)xv1 − k2(−k1e1) + (k1)xv2 + k1(−k2e1)

= −(k2)xv1 + (k1)xv2.

Since (e1, v1, v2) is o.n., by Proposition 2.1.1 there exists a function u
so that

(e1, v1, v2)t = (e1, v1, v2)

 0 (k2)x −(k1)x

−(k2)x 0 −u
(k1)x u 0

 ,

or equivalently, 
(e1)t = −(k2)xv1 + (k1)xv2,

(v1)t = (k2)xe1 + uv2,

(v2)t = −(k1)xe1 − uv1.

We claim that

ux = −1

2
(k2

1 + k2
2)x.

To prove this, we compute

(v1)xt · v2 = (−k1e1)t · v2 = −k1(e1)t · v2

= −k1(−(k2)xv1 + (k1)xv2) · v2 = −k1(k1)x,

= (v1)tx · v2 = ((k2)xe1 + uv2)x · v2 = (k2)x(e1)x · v2 + ux

= (k2)x(k1v1 + k2v2) · v2 + ux = (k2)xk2 + ux.

This proves the claim. Hence

u(x, t) = −1

2
(k2

1 + k2
2) + c(t)

for some smooth function c(t). Remember that for each fixed t, we can
rotate (v1, v2)(·, t) by a constant angle θ(t) to another parallel normal
frame (ṽ1, ṽ2) of γ(·, t), i.e.,{

ṽ1(x, t) = cos θ(t)v1(x, t) + sin θ(t)v2(x, t),

ṽ2(x, t) = − sin θ(t)v1(x, t) + cos θ(t)v2(x, t).

A direct computation shows that

ũ = (ṽ1)t · ṽ2 = u +
dθ

dt
= −1

2
(k2

1 + k2
2) + c(t) + θ′(t).
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If we choose θ so that θ′ = −c, then the new parallel frame satisfies

(e1, ṽ1, ṽ2)t = (e1, ṽ1, ṽ2)

 0 (k̃2)x −(k̃1)x

−(k̃2)x 0
k̃2
1+k̃2

2

2

(k̃1)x − k̃2
1+k̃2

2

2
0

 .

So we have proved the first part of the following Theorem:

Theorem 2.5.2. Suppose γ(x, t) is a solution of the smoke ring equa-
tion (2.5.1) and ||γx(x, 0)|| = 1 for all x. Then

(1) there exists a parallel normal frame (v1, v2)(·, t) for each curve
γ(·, t) so that

(2.5.6)



gx = g

 0 −k1 −k2

k1 0 0

k2 0 0


gt = g

 0 (k2)x −(k1)x

−(k2)x 0
k2
1+k2

2

2

(k1)x −k2
1+k2

2

2
0

 ,

where g = (e1, v1, v2) and k1(·, t) and k2(·, t) are the principal
curvatures of γ(·, t) with respect to v1(·, t), v2(·, t) respectively,

(2) q = k1 + ik2 is a soluton of the NLS (2.5.4).

Proof. We have proved (1). For (2), we use (2.5.6) to compute the
evolution of (k1)t and (k2)t:

(k1)t = ((e1)x · v1)t = (e1)xt · v1 + (e1)x · (v1)t

= (e1)tx · v1 + (k1v1 + k2v2) ·
(

(k2)xe1 −
(

k2
1 + k2

2

2

)
v2

)
= (−(k2)xv1 + (k1)xv2)x · v1 −

k2(k
2
1 + k2

2)

2

= −(k2)xx −
k2(k

2
1 + k2

2)

2
.

Similar computation gives

(k2)t = (k1)xx +
k1(k

2
1 + k2

2)

2
.

Let q = k1 + ik2. Then we have

qt = i(qxx +
|q|2

2
q).

�
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The converse of Theorem 2.5.2 is also true. Given a solution q =
k1 + ik2 of the NLS (2.5.4), we need to first solve the first order PDE
system (2.5.6) to get (e1, v1, v2), then solve another first order PDE
system

(2.5.7)

{
γx = e1,

γt = −k2v1 + k1v2.

Then γ(x, t) satisfies the smok-ring equation (2.5.1). Now we are ready
to prove the converse of Theorem 2.5.2. Let q = k1+ik2 be a solution of
NLS. To construct a solution γ(x, t) of the smoke ring equation (2.5.1),
we need to solve two first order PDE systems (2.5.6) and (2.5.7). Sys-
tem (2.5.6) is of the form (2.4.7). By Corollary 2.4.2, the compatibility
condition is (2.4.8), i.e.,

(2.5.8) Pt −Qx = [P, Q],

where

P =

 0 −k1 −k2

k1 0 0
k2 0 0

 , Q =

 0 (k2)x −(k1)x

−(k2)x 0
k2
1+k2

2

2

(k1)x −k2
1+k2

2

2
0


Since P, Q are skew-symmetric,

[P, Q]t = (PQ−QP )t = (QtP t − P tQt) = (QP − PQ) = −[P, Q].

Hence [P, Q] is is skew-symmetric. So we only need to check the 21,
31 and 32 entries of (2.5.8). A direct computation shows that (2.5.8)
holds if and only if{

(k1)t + (k2)xx = −k2(k2
1+k2

2)

2
,

(k2)t − (k1)xx =
k1(k2

1+k2
2)

2
,

which is the NLS equation for q = k1+ik2. So by Corollary 2.4.2, given
a constant orthogonal matrix (u0

1, u
0
2, u

0
3), there exists a unique solution

g = (e1, v1, v2) for system (2.5.6) with initial data g(0) = (u0
1, u

0
2, u

0
3).

To construct the solution γ for the smoke ring equation, we need to
solve (2.5.7). The compatibility condition for (2.5.7) is given by γxt =
γtx, which is

(e1)t = (−k2v1 + k1v2)x.



LECTURE NOTES ON CURVES AND SURFACES IN R3 21

This holds because (e1, v1, v2) satisfies (2.5.6). We carry out this direct
computation:

(e1)t = −(k2)xv1 + (k1)xv2,

(−k2v1 + k1v2)x = −(k2)xv1 − k2(v1)x + (k1)xv2 + k1(v2)x

= −(k2)xv1 + k2k1e1 + (k1)xv2 − k1(k2e1)

= −(k2)xv1 + (k1)xv2.

In other word, we have proved

Theorem 2.5.3. Let q = k1 + ik2 be a solution of NLS, p0 ∈ R3, and
(u1, u2, u3) a constant orthogonal matrix. Then there exist a solution γ
of the smoke ring equation and a parallel frame (e1, v1, v2)(·, t) for γ(·, t)
so that k1(·, t), k2(·, t) are the principal curvatures along v1(·, t), v2(·, t)
respectively, γ(0, 0) = p0, and (e1, v1, v2)(0, 0) = (u1, u2, u3).

Note that given a solution q = k1 + ik2 of NLS, the proof of Theroem
2.5.3 gives an algorithm to construct numerical solution of the smoke-
ring equation.
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3. Surfaces in R3

3.1. Some linear algebra.

Let V be a vector space, and ( , ) an inner product on V . A linear
map T : V → V is self-adjoint if

(A(v1), v2) = (v1, A(v2)) ∀ v1, v2 ∈ V.

The following is the Spectral Theorem for self-adjoint operators:

Theorem 3.1.1. Suppose V is an n-dimensional vector space equipped
with an inner product (, ). If T : V → V is a linear self-adjoint opera-
tor, then

(1) eigenvalues of T are real,
(2) there is an orthonormal basis v1, · · · , vn of V that are eigenvec-

tors of T , i.e., T (vi) = λivi for 1 ≤ i ≤ n.

A bilinear functional b : V × V → R is symmetric if

b(v, w) = b(v, w) for all v, w ∈ V.

A symmetric bilinear form b is positive definite if b(v, v) > 0 for all
non-zero v ∈ V .

We associate to each self-adjoint linear map T on V a symmetric
bilinear functional:

Theorem 3.1.2. Let T : V → V be a self-adjoint linear map, and
b : V × V → R the map defined by

b(v1, v2) = (T (v1), v2).

Then

(1) b is a symmetric bilinear form on V ,
(2) all eigenvalues of T are positive if and only if b is positive defi-

nite.

Given a linear map T : V → V and a basis v1, · · · , vn of T , we can
associate to T a matrix A so that T is represented by the multiplication
of A. This is because each T (vi) can be written as a linear combination
of the basis:

T (vi) =
∑

j

ajivj.

Write v =
∑

j xjvj, and T (v) =
∑

j yjvj. A direct computation gives

y = Ax, where A = (aij), x = (x1, · · · , xn)t, and y = (y1, · · · , yn)t.
In other words, after choosing a basis of V , the operator T looks like
the map x 7→ Ax. We call A the matrix of T associated to the basis



LECTURE NOTES ON CURVES AND SURFACES IN R3 23

v1, · · · , vn. If we change basis, the corresponding matrix of T change
by a conjugation:

Proposition 3.1.3. Let T : V → V be a linear map, and A and B the
matrices of T associated to bases {v1, · · · , vn} and {u1, · · · , un} of V
respectively. Write ui =

∑
j gjivj. Then B = g−1Ag, where g = (gij).

Below we list some properties of determinants:

det(AB) = det(A) det(B),

det(At) = det(A),

det(gAg−1) = det(A).

Let A denote the matrix associated to the linear operator T : V → V
with respect to the basis v1, · · · , vn. Define

tr(T ) = tr(A), det(T ) = det(A),

where A is the matrix of T associated to the basis v1, · · · , vn. Since

tr(gAg−1) = tr(A), det(gAg−1) = det(A),

tr(T ) and det(T ) are independent of the choice of basis. Moreover, if
T has an eignbasis with eigenvalues λ1, · · · , λn, then

tr(T ) =
n∑

j=1

λj, det(T ) =
n∏

j=1

λj.

Let v1, · · · , vn be a basis of V , b : V × V → R a symmetric bilinear
form, and bij = b(vi, vj). Given ξ =

∑
i xivi and η =

∑
i yivi, we have

b(ξ, η) =
∑
ij

bijxiyj = X tBY,

where X t = (x1, . . . , xn), Y t = (y1, . . . , yn), and B = (bij). We call
B = (bij) the matrix associated to b with respect to basis v1, · · · , vn.

Proposition 3.1.4. Let (V, ( , )) be an inner product space, T : V → V
a self-adjoint operator, b(X, Y ) = (T (X), Y ) the symmetric bilinear
form associated to T , and A = (aij), B = (bij) the matrices of T and b
associated to basis v1, · · · , vn respectively. Let gij = (vi, vj), G = (gij),
and G−1 = (gij) the inverse of G. Then

(1) B = AtG,
(2) A = G−1B,

(3) det(A) = det(B)
det(G)

, tr(A) =
∑

i,j bijg
ij.
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Proof. Compute directly to get

bij = (T (vi), vj) = (
∑

k

akivk, vj) =
∑

k

akigkj = (AtG)ij.

This proves (1). Statement (2) and (3) are consequences of (1). �

Suppose b : V ×V → R is the symmetric bilinear form associated to
the self-adjoint operator T : V → V , and v1, · · · , vn are orthonormal
eigenbasis of T with eigenvalues λ1, · · · , λn. Then the diagonal matrix
diag(λ1, · · · , λn) is the matrix associated to both T and b with respect
to the basis v1, · · · , vn. Moreover, given v ∈ V , write v =

∑n
i=1 xivi,

then

b(v, v) = b

(
n∑

i=1

xivi,
n∑

j=1

xjvj

)
=

(
n∑

i=1

λixivi,
n∑

j=1

xjvj

)
=

n∑
i=1

λix
2
i .

In other words, the quadratic form Q(v) = b(v, v) associated to b is
diagonalized. We also see that the maximum (minimum resp.) of b(v, v)
taken among all ‖v‖ = 1 is the largest (smallest resp.) eigenvalue of T .

Tensor algebra

Let V be a finite dimensional vector space, and the dual V ∗ =
L(V, R) the space of all linear functional from V to R. Note that
V is naturally isomorphic to V ∗∗ = (V ∗)∗ = L(V ∗, R) via the map

φ(v)(`) = `(v), v ∈ V, ` ∈ V ∗.

The tensor product V ∗
1 ⊗ · · ·V ∗

k is the vector space of all multilinear
functionals b : V1 × · · · × Vk → R, and the tensor product

T k
m(V ) = ⊗kV ∗ ⊗m V

is the space of all multilinear functionals from V ×· · ·V ×V ∗×· · ·×V ∗

to R (here we use k copies of V and m copies of V ∗).
Given fi ∈ V ∗

i and ξi+k ∈ Vi+k, let f1 ⊗ · · · ⊗ fk ⊗ ξk+1 ⊗ · · · ⊗ ξk+m

be the element in V ∗
1 ⊗ V ∗

k ⊗ Vk+1 ⊗ · · · ⊗ Vk+m defined by

(f1 ⊗ · · · ⊗ fk ⊗ ξk+1 ⊗ · · · ⊗ ξk+m)(u1, · · · , uk, hk+1, · · · , hk+m)

= f1(u1) · · · fk(uk)hk+1(ξk+1) · · ·hk+m(ξk+m)

for ui ∈ Vi and hk+i ∈ V ∗
k+i.

Proposition 3.1.5. Let v1, · · · , vn be a basis of V , and `1, · · · , `n ∈ V ∗

the dual basis, i.e., `i(vj) = δij. Let b : V × V → R be a bilinear
functional, and bij = b(vi, vj). Then

b =
∑
ij

bij `i ⊗ `j.
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Let L(V1, V2) denote the space of all linear maps from V1 to V2. Given
` ∈ V ∗

1 and v ∈ V2, the tensor product ` ⊗ v can be identified as the
linear map from V1 to V2 defined by u 7→ `(u)v. It is easy to check that

L(V1, V2) ' V ∗
1 ⊗ V2.

In fact,

Proposition 3.1.6. Let {v1, · · · , vn} and {w1, · · · , wm} be basis of V1

and V2 respectively, and `1, · · · , `n the dual basis of V ∗
1 . Suppose T :

V1 → V2 is a linear map, and T (vi) =
∑m

j=1 ajiwj for 1 ≤ i ≤ n. Then

T =
∑
ij

aji `i ⊗ wj.

Corollary 3.1.7. Suppose {v1, · · · , vn} is a basis of V and {`1, · · · , `n}
is the dual basis of V ∗. Then the identity map Id =

∑n
i=1 `i ⊗ ei.

A multilinear functional u ∈ ⊗k(V ∗) is called alternating if

u(ξτ(1), · · · , ξτ(k)) = sgn (τ)u(ξ1, · · · , ξk)

for all ξ1, · · · , ξk ∈ V , where τ a permutation of {1, · · · , k} and sgn(τ)
is the sign of τ .

For θ1, θ2 ∈ V ∗, let θ1∧θ2 denote the bilinear functional on V defined
by

(θ1 ∧ θ2)(ξ1, ξ2) = θ1(ξ1)θ2(ξ2)− θ2(ξ1)θ1(ξ2).

By definition, θ1∧θ2 is alternating. So θ1∧θ2 is the anti-symmetrization
of θ1 ⊗ θ2.

Let ∧k(V ∗) denote the space of all alternating functionals in ⊗k(V ∗).
It follows from definitions that we have

Proposition 3.1.8. The following are true:

(1) If θ ∈ V ∗, then θ ∧ θ = 0.
(2) If θ1, θ2 ∈ V ∗, then θ1 ∧ θ2 = −θ2 ∧ θ1.
(3) If `1, · · · , `n is a basis of V ∗, then

{`i1 ∧ · · · ∧ `ik | 1 ≤ i1 < · · · < ik ≤ n}

is a basis of ∧k(V ∗). In particular, dim(∧n(V ∗)) = 1 and
dim(∧k(V ∗)) = 0 if k > n.
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3.2. Embedded surfaces in R3.

Let O be an open subset of R2. A smooth map f : O → R3 is called
an immersion if fx1(p), fx2(p) are linearly independent for all p ∈ O.

Let M be a subset of R3. A subset U of M is open in the induced
topology if there exists an open subset U0 of Rn so that U = U0 ∩M .

Definition 3.2.1. A subset M of R3, equipped with the induced
topology, is called an embedded surface if there exist an open cover
{Uα | α ∈ I} of M and a collection of homeomorphisms φα : Oα → Uα

from open subset Oα of R2 onto Uα such that

(1) φα : Oα → Uα ⊂ R3 is an immersion,
(2) φ−1

β φα : φ−1
α (Uα∩Uβ) → φ−1

β (Uα∩Uβ) is a smooth diffomorphism
for any α, β ∈ I.

The collection A = {φα : Oα → Uα | α ∈ I} is called an atlas of M .
A homeomorphism φ : O → U ⊂ M is said to be compatible to A if

φ−1
α ◦ φ : φ−1(U ∩ Uα) → φ−1

α (U ∩ Uα)

is a diffeomorphism for all α ∈ I. Such φ is called a local coordinate
system or a local chart on M .

Example 3.2.2. Examples of embedded surfaces in R3

(1) Graph.
Let O be an open subset of R2, and u : O → R a smooth

proper map. Here a map is proper if the preimage of any com-
pact subset is compact. The graph

M = {(x1, x2, u(x1, x2)) | x1, x2 ∈ O}

is an embedded surface in R3 with one chart defined by φ(x1, x2) =
(x1, x2, u(x1, x2)).

(2) Surface of revolution.
Let α(s) = (y(s), z(s)) : (a, b) → R2 be the parametrization

of a smooth curve C in the yz-plane, and M the set obtained
by rotating the curve C along the y-axis, i.e.,

M = {(z(s) cos t, y(s), z(s) sin t) | s ∈ (a, b), t ∈ [0, 2π]}.

It is easy to check that M is an embedded surface in R3 (we
need two charts to cover M).

(3) Let O be an open subset of R3, and f : O → R3 be a smooth
map such that fx1 , fx2 are linearly independent at every point
of O and f is a homeomorphism from O to f(O), where f(O)
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is equipped with the induced topology. Then M = f(O) is an
embedded surface of R3.

(4) If M is an embedded surface of R3 and φα : Oα → Uα is a local
coordinate system on M , then Uα is also an embedded surface
in R3.

The following Proposition is a consequence of the Implicit Function
Theorem:

Proposition 3.2.3. Let f : R3 → R be a smooth function. If c ∈ R
such that for all p ∈ f−1(c) the gradient

∇f(p) = (fx1(p), fx2(p), fx3(p)) 6= 0,

then M = f−1(c) is an embedded surface.

Applying the above Proposition to the function

f(x) = a1x
2
1 + a2x

2
2 + a3x

2
3,

we see that the spheres, ellipsoids, hyperbolids are embedded surfaces.
Apply to

f(x1, x2, x3) = x2
1 + x2

2

to see that the cylinder is an embedded surface.

Definition 3.2.4.

(1) Let M be an embedded surface in R3. A map α : (a, b) → M
is called a smooth curve if πi ◦ α : (a, b) → R is smooth for all
1 ≤ i ≤ 3, where πi : R3 → R is the projection of R3 to the i-th
component.

(2) Let M and N be embedded surfaces in R3. A map f : M → N
is smooth if whenever α is a smooth curve on M implies that
f ◦ α is a smooth curve on N .

Tangent plane

Let M be an embedded surface in R3, and p0 ∈ M . If α : (−δ, δ) →
M is a smooth curve with α(0) = p0, then α can be viewed as a map
from (−δ, δ) to R3. So we can compute α′(0) as in calculus. The space

TMp0 = {α′(0) | α : (−δ, δ) → M is smooth with α(0) = p0}
is a vector space, and is called the tangent plane of M at p0.

If f : O → U ⊂ M is a local coordinate system of M , then

fx1(q), fx2(q) spans TMf(q) and
fx1×fx2

||fx1×fx2 ||
(q) is a unit vector normal

to TMf(q).
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The differential of a smooth map

Suppose M and N are two embedded surfaces in R3, and f : M → N
is a smooth map. The differential of f at p, dfp, is the linear map from
TMp to TNf(p) defined by

dfp(α
′(0)) = (f ◦ α)′(0),

where α : (−δ, δ) → M is a smooth curve on M with α(0) = p. It
follows from the Chain rule that dfp is well-defined, i.e., if α, β are
two curves on M so that α(0) = β(0) = p and α′(0) = β′(0), then
(f ◦ α)′(0) = (f ◦ β)′(0).

Smooth vector fields

Let U be an open subset of M . A map ξ : U → R3 is called a smooth
vector field of M defined on M if

(1) ξ(p) ∈ TMp for each p ∈ U ,
(2) given any local coordinate system φα : Oα → Uα of M there

exist smooth function ξ1, ξ2 on φ−1
α (U ∩ Uα) so that

ξ(f(q)) = ξ1(q)(φα)x1(q) + ξ2(q)(φα)x2(q)

for all q ∈ U ∩ Uα.

We will sometimes write a shorthand for ξ in local coordinate system
φα by

ξ = ξ1(φα)x1 + ξ2(φα)x2 .

If f : O → U ⊂ M is a local coordinate system, then we often let
∂

∂xi
to denote the vector field fxi

◦ f−1, i.e.,

∂

∂xi

(p) := fxi
(f−1(p)).

Then the above vector field ξ can be written as ξ1
∂

∂x1
+ ξ2

∂
∂x2

.

Smooth differential 1-forms

Let f : O → U ⊂ M be a local coordinate system on the embedded
surface M of R3. Let (dx1)p, (dx2)p denote the base of TM∗

p dual to
the base fx1(p), fx2(p) of TMp, i.e., dxi(fxj

) = δij. Let (dx1 ∧ dx2)p =
(dx1)p ∧ (dx2)p.

A smooth differential 1-form θ on an open subset U of M is an assign-
ment θ(p) ∈ TM∗

p for each p ∈ U satisfying the following condition:



LECTURE NOTES ON CURVES AND SURFACES IN R3 29

given any local coordinate system φα : Oα → Uα ⊂ M , there exist
smooth A1, A2 : φ−1

α (U ∩ Uα) → R so that

θf(q) = A1(q)(dx1)f(q) + A2(q)(dx2)f(q)

for all q ∈ φ−1
α (U ∩ Uα). We often write the above equation in local

coordinate system φα as

θ = A1dx1 + A2dx2.

If h : M → R is a smooth map, then dhp : TMp → TRh(p) = R. So
we can identify dhp ∈ TM∗

p and dh as a smooth differential 1-form.

Differential 2-forms

A smooth differential 2-form ω on an open subset U of M is an
assignment p ∈ U 7→ ωp ∈ ∧2TM∗

p satisfying the condition that given
any local coordinate system f : O → U0 ⊂ M there exists a smooth
function h : f−1(U ∩ U0) → R such that ω can be written as

ω(f(q)) = h(q)(dx1)f(q) ∧ (dx2)f(q)

for all q ∈ f−1(U ∩ U0). We will use the notation

ω = h dx1 ∧ dx2

on U ∩ U0 with respect to the local coordinate system f .

Wedge products

Let θ1, θ2 be two smooth 1-forms on M . The wedge product θ1 ∧ θ2

is defined by

θ1 ∧ θ2(v1, v2) = θ1(v1)θ2(v2)− θ2(v1)θ1(v2)

for all v1, v2 ∈ TMp and p ∈ M . It follows from the definition that if
θ1, θ2 are 1-forms, then

θ1 ∧ θ2 = −θ2 ∧ θ1.

Exterior differentiation

If 1-form θ in local coordinates is θ = h1dx1+h2dx2, then the exterior
differentiation of θ is defined to be

dθ = (−(h1)x2 + (h2)x1) dx1 ∧ dx2.

The definition of d is independent of the choice of local coordiante
systems. In other words, if θ = h1dx1 + h2dx2 and θ = b1dy1 + b2dy2
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with respect to local coordinate systems φα and φβ respectively, then
a direct computation implies that

(−(h1)x2 + (h2)x1) dx1 ∧ dx2 = (−(b1)y2 + (b2)y1) dy1 ∧ dy2.

A 1-form θ is called exact if there exists a smooth function h on M
so that θ = dh. A 1-form θ is called closed if dθ = 0.

Next we prove the Poincaré Lemma.

Proposition 3.2.5. Let θ be a 1-form on an embedded surface M in
R3. Then

(i) θ is exact implies θ is closed,
(ii) if θ is closed, then given any p ∈ M , there exist an open subset

U containing p and a smooth function h : U → R such that
θ = dh on U , i.e., θ is locally exact.

Proof. Let h : M → R be a smooth function, then by definition of d,

d(dh) = d(hx1dx1 + hx2dx2) = (−(hx1)x2 + (hx2)x1) dx1 ∧ dx2.

So dh is closed. This proves (i).
Let θ be a smooth 1-form. Given a local coordinate system f : O →

U0 around p = f(x0
1, x

0
2), we can write θ = A(x1, x2)dx1 + B(x1, x2)dx2

with some smooth function A, B : O → R. The closeness of θ means
Ax2 = Bx1 . This implies that there exists a small open subset O0 of O
containing (x0

1, x
0
2) so that

hx1 = A, hx2 = B.

So θ = dh on U0 = f(O0). �

It follows from definitions of d and wedge product that we have

Proposition 3.2.6. If θ is a 1-form and h : M → R smooth, then

d(hθ) = dh ∧ θ + hdθ = d(θh) = hdθ − θ ∧ dh.

Smooth bilinear forms

A smooth bilinear form b on an open subset U of M is a collection of
bilinear forms bp : TMp×TMp → R with p ∈ U satisfying the condition
that given any local coordinate system f : O → U0 on M there exist
smooth functions bij on f−1(U ∩ U0) so that

bf(q) =
2∑

i,j=1

bij(q) (dxi)f(q) ⊗ (dxj)f(q).
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We will write b locally as
∑2

i,j=1 bij(x)dxi ⊗ dxj. If bp is symmetric
bilinear for each p ∈ U , then bij = bji. When b is symmetric, we will

skip the ⊗ and simply write b as
∑2

i,j=1 bij(x)dxidxj.
When we calculate vector fields and differential forms on M , we only

need to do the computation in local coordinates of M .

3.3. The first and second fundamental forms.

Let M be an embedded surface in R3, and f : O → U a local
coordinate system on M . Then fx1 , fx2 form a base of TMf(x) for all
x ∈ O and

N =
fx1 × fx2√
‖fx1 × fx2‖

.

is the unit vector that is normal to TMf(x1,x2).
We will assciate to each p ∈ M two smooth symmetric bilinear forms,

the first and second fundamental forms of M . The first fundamental
form of M at p ∈ M denoted by

Ip : TMp × TMp → R

is the bilinear functional defined by Ip(u, v) = u · v, the dot product of
u, v in R3. Then Ip defines an inner product on TMp. Let

g11 = fx1 · fx1 , g12 = g21 = fx1 · fx2 , g21 = fx2 · fx2 .

Then

I = g11dx1 ⊗ dx2 + g12(dx1 ⊗ dx2 + dx2 ⊗ dx1) + g22dx2 ⊗ dx2

= g11dx2
1 + 2g12dx1dx2 + g22dx2

2.

Since gij are smooth functions, I is a smooth symmetric bilinear form
on M .

The unit normal vector field N is a map from M to S2, which is
called the Gauss map of M . Recall that the differential of N at p is
the linear map from TMp to T (S2)N(p) defined by

dNp(u) = (N ◦ α)′(0),

where α : (−ε, ε) → M is a smooth curve with α(0) = p and α′(0) = u.
It follows from the definition of dNp that

dN(fx1) = Nx1 , dN(fx2) = Nx2 .

Since the tangent plane of S2 at a point q ∈ S2 is the plane perpen-
dicular to q. We see that both TS2

N(p) and TMp are perpendicular to
Np, so they are the same plane. Hence dNp can be viewed as a linear
operator from TMp to TMp.
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Proposition 3.3.1. The linear map dNp : TMp → TMp is self-adjoint.

Proof. Use fxi
·N = 0 to compute

dNp(fxi
) · fxj

= Nxi
· fxj

= (N · fxj
)xi
−N · fxjxi

= −N · fxixj
.

Similarly,

fxi
· dNp(fxj

) = −N · fxixj
.

This porves that dNp(fxi
) · fxj

= fxi
· dNp(fxj

) = −N · fxixj
. �

The self-adjoint operator −dNp : TMp → TMp is called the shape
operator of the surface M at p. The symmetric bilinear form IIp asso-
ciated to the self-adjoint map −dNp is called the second fundamental
form of the surface, i.e.,

II(fxi
, fxj

) = −dN(fxi
) · fxj

= N · fxixj
.

We can write the second fundmental form II in terms of the dual
basis dx1, dx2:

II = `11 dx2
1 + 2`12 dx1dx2 + `22 dx2

2,

where

`ij = −Nxi
· fxj

= N · fxixj
.

We claim that the first and second fundamental forms are invariant
under rigid motions. To see this, let C(x) = Ax + v0 be a rigid motion
of R3, i.e., A is an orthogonal transformation and v0 is a constant
vector in R3. Let f : O → U ⊂ M is a local coordinate system of
the embedded surface M in R3. Then f̂ = C ◦ f is a local coordinate
system for the new surface C(M), f̂xi

= Afxi
, and N̂ = AN is normal

to C(M). Since A is an orthogonal transformation,

(Av1) · (Av2) = v1 · v2.

Let Î and ÎI denote the fundamental forms of M̂ = C(M). Then

ĝij = Î(f̂xi
, f̂xj

) = f̂xi
· f̂xj

= Afxi
· Afxj

= fxi
· fxj

= I(fxi
, fxj

) = gij.

So Î = I. Similarly, ÎI = II. This proves our claim.

Example 3.3.2. Fundamental forms of a graph

Let u : O → R be a smooth function, and f : O → R3 the graph of
u, i.e., f is defined by

f(x1, x2) = (x1, x2, u(x1, x2)),
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i.e., M = f(O) is the graph of u. Then

fx1 = (1, 0, ux1), fx2 = (0, 1, ux2),

fx1x1 = (0, 0, ux1x1), fx1x2 = (0, 0, ux1x2), fx2x2 = (0, 0, ux2x2),

N =
(−ux1 ,−ux2 , 1)√

u2
x1

+ u2
x2

+ 1
.

A direct computation gives

g11 = fx1 · fx1 = 1 + u2
x1

,

g12 = fx1 · fx2 = ux1ux2 ,

g22 = fx2 · fx2 = 1 + u2
x2

,

h11 = N · fx1x1 =
ux1x1√

u2
x1

+ u2
x2

+ 1
,

h12 = N · fx1x2 =
ux1x2√

u2
x1

+ u2
x2

+ 1
,

h22 = N · fx2x2 =
ux2x2√

u2
x1

+ u2
x2

+ 1
.

So the two fundamental forms for f(O) are

I = (1 + u2
x1

)dx2
1 + 2ux1ux2dx1dx2 + (1 + u2

x2
)dx2

2,

II =
1√

1 + u2
x1

+ u2
x2

(ux1x1dx2
1 + 2ux1x2dx1dx2 + ux2x2dx2

2).

Proposition 3.3.3. Locally a surface is a graph.

Proof. Let f = (f1, f2, f3) : U → R3 be a surface. Given p = (x0, y0) ∈
U , since fx1 , fx2 are linearly independent,

det

 i j k
(f1)x1 (f2)x1 (f3)x1

(f1)x2 (f2)x2 (f3)x3

 (p) 6= 0.

So one of the following 2× 2 determinants at p must be non-zero:(
(f1)x1 (f2)x1

(f1)x2 (f2)x2

)
,

(
(f1)x1 (f3)x1

(f1)x2 (f3)x2

)
,

(
(f2)x1 (f3)x1

(f2)x2 (f3)x2

)
.

Suppose

det

(
(f1)x1 (f2)x1

(f1)x2 (f2)x2

)
(p) 6= 0.
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Let π12 : R3 → R2 denote the projection of R3 to the first two coordi-
nates. Then the differential of the map π12 ◦ f : U → R2 at p is given
by the matrix (

(f1)x1 (f2)x1

(f1)x2 (f2)x2

)
at p, which is non-singular. By the Inverse Function Theorem, there
exist open subsets O1,O2 containing p and (f1(p), f2(p)) respectively so
that π12 ◦ f maps O1 diffeomorphically to O2. Let h : O2 → O1 denote
the inverse of π12 ◦ f : O1 → O2, and f̃(y1, y2) = f ◦ h(y1, y2). In other
words, we have changed coordinates (x1, x2) to (y1, y2) and expressed
(x1, x2) ∈ O1 in terms of (y1, y2) ∈ O2. Hence f3(x1, x2) = f3(h(y1, y2))
is a function of y1 and y2. So we see that

f̃(y1, y2) = (y1, y2, f3(h(y1, y2)))

is a graph of u = f3 ◦ h and f̃ is a local parametrization of M . �

Angle and arc length

Since Ip gives an inner product on TMp for all p ∈ M , we can use I
to compute the arc length of curves on M and the angle between two
curves on M :

(1) if α1, α2 : (−ε, ε) → M are two smooth curves such that α1(0) =
α2(0), then the angle between α1 and α2 is defined to be the
angle between α′1(0) and α′2(0),

(2) the arc length of a curve on M given by α(t) = f(x1(t), x2(t))
with t ∈ [a, b] is∫ b

a

||α′(t)||dt =

∫ b

a

||fx1x
′
1 + fx2x

′
2||dt

=

∫ b

a

(
2∑

i,j=1

(fxi
· fxj

)x′ix
′
j

) 1
2

dt

=

∫ b

a

(
2∑

i,j=1

gij(x1(t), x2(t))x
′
i(t)x

′
j(t)

) 1
2

dt.

Recall that the area of the parallelgram spanned by v1, v2 in R3 is
equal to

||v1|| ||v1|| | cos θ| = ||v1 × v2|| =
(

det

(
v1 · v1 v1 · v2

v1 · v2 v2 · v2

)) 1
2

,

where θ is the angle between v1 and v2.
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Proposition 3.3.4. Let f : O → U ⊂ M be a local coordinate system
of an embedded surface, and gij = fxi

· · · fxj
the coefficients of the first

fundamental form. Then the area of U is

Area(U) =

∫
O
||fx1 · fx2|| dx1dx2 =

∫
O

√
det(gij) dx1dx2.

The second fundamental form has a very simple geometric meaning:

Proposition 3.3.5. Let v be a unit tangent vector of M = f(O) at
p ∈ M = f(O), and α the intersection curve of M and the plane
through p spanned by v and the normal vector Np of M at p. Then
II(v, v) is the curvature of the plane curve α at p.

Proof. Write α(s) = f(x1(s), x2(s)) with arc length parameter. Then

α′′(s) =
2∑

ij=1

fxixj
x′ix

′
j.

Since N(p) is normal to M at p and α′(0) = v, N(p) is normal to α′(0).
But the curvature of the plane curve α at s = 0 is α′′(0) ·N(p), and

α′′(0) ·N =
2∑

i,j=1

(fxixj
·N)x′ix

′
j =

2∑
ij=1

hijx
′
ix
′
j = II(α′(0), α′(0)).

�

3.4. The Gaussian curvature and mean curvature.

Definition 3.4.1. The eigenvalues λ1, λ2 of the shape operator −dNp

are called the principal curvatures of M at p, the unit eigenvectors
of −dNp are called the principal directions , det(−dNp) is called the
Gaussian curvature, and the trace of dNp is called the mean curvature
of M at p.

So we have

K(p) = det(−dNp), H =
1

2
tr(−dNp).

If λ1, λ2 are eigenvalues of −dNp, then

K = λ1λ2, H = λ1 + λ2.
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Proposition 3.4.2. Let f : O → U be a local coordinate system of
an embedded surface M in R3, and gij, `ij the coefficients of I, II on U
respectively. Then

K =
det(`ij)

det(gij)
=

`11`22 − `2
12

g11g22 − g2
12

,

H =
g22`11 − 2g12`12 + g11`22

g11g22 − g2
12

Proof. By Proposition 3.1.4, K = det(G−1L) = det(G)
det(L)

, and H =

tr(G−1L). The formula for H follows from

G−1 =
1

det(gij)

(
g22 −g12

−g12 g11

)
.

�

Suppose v1, v2 are unit eigenvectors of −dNp with eigenvalues λ1 >
λ2, then IIp(u, u) assumes minimum value λ2 on the unit circle of TMp

at v2 and maximum value λ1 at v1.

Below we compute the K and H of a plane, a sphere, a cylinder, and
a graph.

Example 3.4.3. Let M be a plane. Let us parametrize it as a graph
f(x1, x2) = (x1, x2, a1x1 + a2x2). Then

fx1 = (1, 0, a1), fx2 = (0, 1, a2), N =
(a1, a2,−1)√
a2

1 + a2
2 + 1

.

Since N is a constant vector, Nxi
= 0. So the shape operator dNp = 0.

Hence K = 0 and H = 0. The first and second fundamental forms are

I = (1 + a2
1)dx2

1 + (1 + a2
2)dx2

2, II = 0.

Example 3.4.4. Let M be the sphere of radius r. Let f(x1, x2) be a
parametrization of a piece of the sphere. Note that the unit normal N of
M at f(x1, x2) is 1

r
f(x1, x2). Hence dN(fx) = 1

r
fx and dN(fy) = 1

r
fy.

This means that dNp = 1
r
Id. So K = 1

r2 and H = −2
r
.

Example 3.4.5. Let M be the cylinder parametrized as

f(x, y) = (r cos x, r sin x, y).

Then

fx = (−r sin x, r cos x, 0),

fy = (0, 0, 1),

N = (cos x, sin x, 0).



LECTURE NOTES ON CURVES AND SURFACES IN R3 37

So Nx = 1
r
fx and Ny = 0. This means that dNp has two eigenvalues 1

r

and 0. Hence K = 0 and H = −1
r
. The first and second fundamental

forms are

I = r2dx2
1 + dy2, II = rdx2.

Note that both a plane and a cylinder have Gaussian curvature 0.

Example 3.4.6. K and H for a graph
Let f(x1, x2) = (x1, x2, u(x1, x2)) denote the graph of a u : O → R.

We have computed the first and second fundamental form in Example
3.3.2. By Proposition 3.4.2, we have

K =
ux1x1ux2x2 − u2

x1x2

(1 + u2
x1

+ u2
x2

)2
,(3.4.1)

H =
(1 + u2

x1
)ux2x2 − 2ux1ux2ux1x2 + (1 + u2

x2
)ux1x1

(1 + u2
x1

+ u2
x2

)
3
2

.(3.4.2)

Definition 3.4.7. A point p in a surface M ⊂ R3 is called an umbilic
point if the shape operator at p is equal to λId for some scalar λ, or
equivalently, the two prinicipal curvatures are equal at p.

Definition 3.4.8. A unit tangent direction u of an embedded surface
M in R3 is called asymptotic if II(u, u) = 0.

Exercise 3.4.9. (1) If K(p0) < 0, then there exist exactly two
asymptotic directions.

(2) If p is not an umbilic point of M , then there exists a local
smooth o.n. frame v1, v2 on M near p so that v1(q), v2(q) are
principal directions of M at q.

Next we give some geometric interpretation of the Gaussian curva-
ture K. The first is a consequence of the Taylor expansion:

Proposition 3.4.10. Let M be an embedded surface in R3, and p ∈ M .

(1) If K(p) > 0, then there is a small neighborhood Op in M of p
such that Op lies on one side of the tangent plane of M at p.

(2) If K(p) < 0, then given any small open subset of M containing
p, M lies on both sides of the tangent plane of M at p.

Proof. After rotation and translation, we may assume that p = (0, 0, 0),
M is parametrized as a graph

f(x1, x2) = (x1, x2, u(x1, x2))
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in a neighborhood of p, and the unit normal Np = (0, 0, 1). This means
that we assume

u(0, 0) = 0, uxi
(0, 0) = 0.

Assume K(p) > 0, then λ1(p)λ2(p) > 0. So either both λ1, λ2 are
positive or both are negative. So II(0, 0) is definite. Use Example
3.3.2 formula (3.4.1) to conclude that (uxixj

(0, 0)) is positive definite or
negative definite. Suppose it is positive definite. Then the quadratic
form

∑
ij uxixj

(0, 0)yiyj > 0 for all y ∈ R2. On the other hand, the
Taylor theorem of u implies that

u(x1, x2)

= u(0, 0) + ux1(0, 0)x1 + ux2(0, 0)x2 +
1

2

∑
ij

uxixj
(0, 0)xixj + o(r2),

=
1

2

∑
ij

uxixj
(0, 0)xixj + o(r2)

where r2 =
∑

i x
2
i . So there exists δ > 0 so that if 0 < ‖x ‖ < δ,

then u(x1, x2) > 0. This proves (1). Statement (2) can be proved in a
similar manner. �

Proposition 3.4.11. Let f : O → U ⊂ M be a local coordinate system
of an embedded surface M in R3, N the unit normal field, and p =
f(q) ∈ f(O). Then

K(p) = lim
Ω→q

Area(N(Ω))

Area(f(Ω))
.

Proof. By Proposition 3.3.4 we have

Area(f(Ω)) =

∫
W

‖fx × fy‖dxdy,

Area(N(Ω)) =

∫
W

‖Nx ×Ny‖dxdy.

Since dN(fx) = Nx and dN(fy) = Ny, we have

‖Nx ×Ny‖ = | det(dN)|‖fx × fy‖ = |K|‖fx × fy‖.

Proposition follows from the fact that the Gaussian curvature K is a
smooth function. �

To understand the meaning of mean curvature H we need calculus
of variations.
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4. Calculus of variations

Let Ω be an open subset of Rn with smooth boundary such that the
closure Ω̄ is compact, and ∂Ω the boundary of Ω. Let α : ∂Ω → Rm

be a smooth map, and C∞
α (Ω, Rm) the space of smooth maps u from Ω

to Rm so that u|∂Ω = α. Let L : Ω× (Rm)n+1 → R be a smooth map,
and J : C∞

α (Ω, R) → R the function defined by

J(u) =

∫
Ω

L(x, u, ux1 , . . . , uxn) dx1 · · · dxn.

The function L is called a Lagrangian, and J the functional defined by
L. The calculus of variations studies the condition on u when u is a
“critical point” of L. Since C∞

α (Ω, Rm) is an infinite dimensional vector
space, we need to extend the concept of critical point to this function
space.

Recall that the following statements are equivalent for a smooth
function f : Rn → R:

(1) p is a critical point of f ,
(2) fx1(p) = · · · = fxn(p) = 0,

(3) d
dt

∣∣∣∣
t=0

f(α(t)) = 0 for all smooth curve α through p.

We will use (3) to define critical points for the functional J defined
by the Lagrangian L. Let u ∈ C∞

α (Ω, Rm).

Definition 4.0.12. A smooth variation of u ∈ C∞
α (Ω, Rm) is a curve

β : (−ε, ε) → C∞
α (Ω, Rm) so that β(0) = u and (s, x) 7→ β(s)(x) is

smooth. Note that v(x) = ∂
∂s

∣∣
s=0

β(s)(x) is a smooth map from Ω to
Rm that vanishes on ∂Ω.

Definition 4.0.13. u ∈ C∞
α (Ω, Rm) is a critical point of J if

(J ◦ β)′(0) = 0

for all smooth variations β of u in C∞
α (Ω, Rm).

Proposition 4.0.14. If u ∈ C∞
α (Ω, Rm) assumes maximum (or mini-

mum) of J , then u is a critical point of J .

Proof. Let β : (−ε, ε) → C∞
α (Ω, Rm) be a smooth variation of u in

C∞
α (Ω, Rm). Then s = 0 is an exteme point of J ◦ β : (−ε, ε) → R and

d
ds
|s=0(J ◦ β) = 0. This implies that extreme point of J is a critical

point of J . �

To derive the condition for u to be a critical point of the functional
J , we need a Lemma:
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Lemma 4.0.15. Given a smooth map (g1, · · · , gm) : Ω → Rm, if∫
Ω

n∑
j=1

gj(x)hj(x)dx1 · · · dxn = 0

for all smooth (h1, · · · , hn) : Ω → Rn with h | ∂Ω = 0, then gj ≡ 0 for
all 1 ≤ j ≤ n.

Proof. We will prove this Lemma when m = 1 and n = 1. For general
m,n, we use the Stoke’s Theorem instead of the Fundamental theorem
of calculus. Since in this notes, we only need to deal with the case
when n = 1 or 2, we will give a proof when n = 2 in more detail later.

If g is not identically zero, then we may assume there is an interval
(δ1, δ2) ⊂ [0, 1] so that g is positive on (δ1, δ2). Choose ε > 0 so

that ε < (δ2−δ1)
2

. Now choose h to be a non-negative function, which
vanishes outside (δ1, δ2) and is h > 0 in (δ1 + ε, δ2 − ε). Then gh > 0

on (δ1 + ε, δ2 − ε) and is non-negative on [0, 1]. So
∫ 1

0
g(t)h(t) > 0, a

contradiction. Hence g ≡ 0. �

We will derive the condition for critical points of L in the later sec-
tions.

4.1. Calculus of Variations of one variable.

In this section, we derive the condition for a curve on an embedded
surface M in R3 joining p, q ∈ M that has shortest arc length.

Given p, q ∈ Rn, let Mp,q denote the space of smooth curves x :
[0, 1] → Rn so that x(0) = p and x(1) = q. Let L : [0, 1]×Rn×Rn → R
be a smooth function, and J : Mp,q → R the functional defined by

(4.1.1) J(x) =

∫ 1

0

L(t, x(t), x′(t))dt.

Suppose γ is a critical point of J . Let β be a variation of γ, and
β′(0) = h. Let

b(s, t) = β(s)(t).

We have

b(0, t) = γ(t), h(t) =
∂b

∂s
(0, t), h(0) = h(1) = 0.
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By definition of critical point and integration by part, we get

0 =
d

ds

∣∣∣∣
s=0

J(β(s)) =
d

ds

∣∣∣∣
s=0

∫ 1

0

L

(
t, b(s, t),

∂b

∂t

)
dt

=

∫ 1

0

∑
j

∂L

∂xj

∂bj

∂s
+

∂L

∂yj

∂2b

∂t∂s

∣∣∣∣
s=0

dt

=

∫ 1

0

∑
j

(
∂L

∂xj

hj +
∑

j

∂L

∂yj

h′j

)
dt, here ′ means

d

dt
,

=

∫ 1

0

∑
j

∂L

∂xj

hjdt +

(∑
j

∂L

∂yj

hj

)∣∣∣∣1
0

−
∫ 1

0

(∑
j

∂L

∂yj

)′
hj dt

=

∫ 1

0

∑
j

(
∂L

∂xj

(t, γ(t), γ′(t))−
(

∂L

∂yj

(t, γ(t), γ′(t))

)′)
hj dt

+
∑

j

∂L

∂yj

hj

∣∣∣∣1
0

.

Since h(0) = h(1) = 0, the boundary term is zero. Hence we have∫ 1

0

∑
j

(
∂L

∂xj

−
(

∂L

∂yj

)′)
hj dt = 0

for all smooth h : [0, 1] → Rn with h(0) = h(1) = 0. By Lemma 4.0.15,
we get

∂L

∂xj

(t, γ(t), γ′(t))−
(

∂L

∂yj

(t, γ(t), γ′(t))

)′
= 0.

So we have proved

Theorem 4.1.1. Let J : Mp,q → R be the functional defined by

L(t, x, y), i.e., J(γ) =
∫ 1

0
L(t, γ(t), γ′(t))dt. Then γ ∈Mp,q is a critical

point of J if and only if

(4.1.2)
∂L

∂xj

(t, γ, γ′) =

(
∂L

∂yj

(t, γ, γ′)

)′
.

Equation (4.1.2) is called the Euler-Lagrange equation for the func-
tional J .

Example 4.1.2. Let L(t, x, y) =
∑n

i=1 y2
i , and E : Mp,q → R the

functional defined by L, i.e.,

E(γ) =

∫ 1

0

n∑
i=1

(γ′i(t))
2dt.
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The functional E is called the energy functional . A direct computation
implies that Euler-Lagrangian equation for E is y′′(t) = 0. So y(t) is
linear. Since y(0) = p and y(1) = q, we have y(t) = p + t(q − p) a
straight line.

4.2. Geodesics.

Let M be an embedded surface in R3, and f : O → U ⊂ M a
coordinate system. A smooth curve α : [0, 1] → U ⊂ M is given by a
smooth curve (x1(t), x2(t)) in O such that

α(t) = f(x1(t), x2(t)).

So α′(t) =
∑

i fxi
x′i. Since the arc length of α is approximated by∑

‖α′(t)‖4t,

the arc length of α is given
∫ 1

0
‖α′(t)‖dt. But

‖α′‖2 = α′ · α′ =

(∑
i

fxi
x′i

)
·

(∑
j

fxj
x′j

)
=
∑
ij

fxi
· fxj

x′ix
′
j

=
∑
ij

gij(x)x′ix
′
j = I(α′, α′).

So the arc length of α is

L(x) =

∫ 1

0

√∑
ij

gij(x)x′ix
′
j dt.

We want to calculate the Euler Lagrange equation for the energy and
arc length functionals on the surface M = f(O) in R3. Let p = (x0

1, x
0
2),

q = (x1
1, x

1
2), and Mp,q the space of all smooth x : [0, 1] → O such that

x(0) = p and x(1) = q. Suppose the first fundamental form of M is
I =

∑
ij gij(x)dxidxj. If x : [0, 1] → O lies in Mp,q, then γ = f ◦ x is a

curve on M joining f(p) to f(q) and

||γ′(t)||2 =
∑
ij

gij(x(t))x′i(t)x
′
j(t).

Let

(4.2.1) L(x, y) =
1

2

∑
ij

gij(x)yiyj,
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and E and L denote the energy and arc length functionals

E(x) =

∫ 1

0

L(x(t), x′(t))dt,

L(x) =

∫ 1

0

√
L(x(t), x′(t))dt.

The Euler-Lagrange equation for the functional E and L are

(4.2.2)
∂L

∂xk

=

(
∂L

∂x′k

)′
. k = 1, 2,

(4.2.3)
∂L
∂xk

2
√

L
=

(
∂L
∂x′

k

2
√

L

)′
.

respectively.

A direct computation gives

∂L

∂xk

=
1

2

∑
ij

gij,kx
′
ix
′
j, where gij,k =

∂gij

∂xk

,

=

(
∂L

∂x′k

)′
=

(∑
i

gikx
′
i

)′
=
∑
i,m

gik,mx′ix
′
m +

∑
i

gikx
′′
i ,

Playing with indices to get∑
i,m

gik,mx′ix
′
m =

∑
ij

gik,jx
′
ix
′
j =

∑
ji

gjk,ix
′
jx
′
i.

Note that the first equality is true because we just let m = j, the second
equality is true because we interchange i, j in the summand. Hence∑

i,m

gik,mx′ix
′
m =

1

2

(∑
ij

gik,jx
′
ix
′
j +
∑
ji

gjk,ix
′
jx
′
i

)
.

This implies that the Euler-Lagrange equation of the energy functional
E is

(4.2.4)
∑

i

gikx
′′
i +

1

2

∑
ij

(gki,j + gjk,i − gij,k) x′ix
′
j = 0.

Let gij denote the ij-th entry of the inverse of the matrix of (gij).
Multiply (4.2.4) by gkm and sum over k to get∑

i,k

gkmgikx
′′
i +

1

2

∑
ijk

gkm (gki,j + gjk,i − gij,k) x′ix
′
j = 0.
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But
∑

k gikgkm = δim and (gij) is symmetric. So we get

(4.2.5) x′′m +
1

2

∑
ijk

gkm (gki,j + gjk,i − gij,k) x′ix
′
j = 0.

So we have proved the first part of the following theorem:

Theorem 4.2.1. If x(t) is a critical point of the energy functional E,
then

(1) x is a solution of

(4.2.6) x′′m +
∑
ij

Γm
ij x

′
ix
′
j = 0,

where Γm
ij = 1

2

∑
k gkm(gki,j + gjk,i − gij,k).

(2) ‖x′(t)‖ is independent of t.

Proof. It remains to prove (2). We compute as follows:(∑
ij

gij(x)x′ix
′
j

)′
=
∑
ijk

gij,kx
′
ix
′
jx
′
k +

∑
ij

gijx
′′
i x

′
j + gijx

′
ix
′′
j

=
∑
ijk

gij,kx
′
ix
′
jx
′
k −

(∑
ijm

gijΓ
i
mkx

′
mx′kx

′
j + gijx

′
iΓ

j
kmx′kx

′
m

)
=
∑
ijk

gij,kx
′
ix
′
jx
′
k −

∑
ijm

gmjΓ
m
ikx

′
ix
′
kx

′
j −

∑
ijm

gimx′iΓ
m
kjx

′
kx

′
j

=
∑
ijk

gij,kx
′
ix
′
jx
′
k −

1

2

∑
ijkmr

gmjg
mr[ik, r]x′ix

′
kx

′
j −

1

2
gimgmr[kj, r]x′ix

′
kx

′
j

=
∑
ijk

(
gij,k −

1

2

∑
r

(δjr[ik, r] + δir[kj, r])

)
x′ix

′
kx

′
j

=
∑
ijk

(
gij,k −

1

2
[ik, j]− 1

2
[kj, i]

)
x′ix

′
jx
′
k

=
∑
ijk

(
gij,k −

1

2
(gkj,i + gij,k − gik,j)−

1

2
(gki,j + gij,k − gkj,i)

)
x′ix

′
jx
′
k

= 0,

where [ij, k] = gik,j + gjk,i − gij,k. (In the above computation, the
second term of the third line is obtained by interchanging i and m,
and the third term is obtained by interchanging j and m). This proves
‖x′(t)‖2 =

∑
ij gij(x(t))x′i(t)x

′
j(t) is constant. �

Proposition 4.2.2. If k : [a, b] → [0, 1] is a diffeomorphism, then
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(1) L(x ◦ k) = L(x), i.e, the arc length of a curve on M does not
depend on the parametrization of the curve.

(2) if x is a critical point of J , then so is x ◦ k.

Proof. Suppose s = k(r) and y(r) = x(k(r)). Then dy
dr

= dx
ds

ds
dr

. Both
statements follow from the change of variable formula in integration.

�

Proposition 4.2.3. If x is a critical point of the arc length functional
L and is parametrized proportional to its arc length, then x is a critical
point of the energy functional E. Conversely, if x is a critical point of
E, then x is parametrized proportional to its arc length and is a critical
point of L.

Proof. If x is a critical point of L, then we may assume that α(t) =
f(x1(t), x2(t)) is parametrized by arc length parameter. This means
we may assume ‖α′(t)‖ ≡ 1. But

‖α′(t)‖2 =
∑
ij

gijx
′
ix
′
j = L(x, x′) ≡ 1.

Since x is a critical point of L, x is a solution of (4.2.3). But L(x, x′) ≡ 1
implies that x is a solution of (4.2.2), i.e., x is a critical point for E.

Conversely, if x is a critical point of E, then by Theorem 4.2.1 (ii),
L(x, x′) is constant. If L(x(t), x′(t)) is constant, then (4.2.3) and(4.2.2)
are the same. This proves that if x is a critical point of E, then x is a
critical point of L. �

A critical point of the arch length functional L on Mp,q is called a
geodesic. Equation (4.2.6) is called the geodesic equation.

It follows from Proposition 4.0.14 that if γ(t) = f(x1(t), x2(t)) is a
curve on M joining p, q, which is parametrized by arc length, and has
shortest arc length, then γ is a geodesic and (x1(t), x2(t)) is a solution
of the geodesic equation.

4.3. Calculus of variations of two variables.

Suppose Ω is an open subset of R2 such that the boundary ∂Ω is a
simple closed curve. Fix a function γ : ∂Ω → R, let Cγ(Ω, R) denote
the set of all smooth maps u : Ω → R so that u | ∂Ω = γ. Let

L : Ω× (R3)3 → R
be a smooth function, and J : Cγ(Ω, R) → R the functional defined by

J(u) =

∫
Ω

L(x, y, u(x, y), ux(x, y), uy(x, y))dxdy.(4.3.1)
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We want to derive the condition for u being a critical point of J . This
can be carried out in a similar manner as for one variable case except
that we need to use the two dimensional version of The Fundamental
Theorem of Calculus, i.e., the Green’s Formula or the Stoke’s theorem
for dimension 2.

First, we recall the definition of the line integral,∮
∂Ω

P (x, y)dx + Q(x, y)dy.

Let (x, y) : [a, b] → R2 be a parametrization of the boundary curve ∂Ω.
Then∮

∂Ω

Pdx + Qdy =

∫ b

a

P (x(t), y(t))x′(t) + Q(x(t), y(t))y′(t) dt.

The Green’s formula is

Theorem 4.3.1. Let P, Q : Ω → R be smooth functions. Then

(4.3.2)

∮
∂Ω

P (x, y)dx + Q(x, y)dy =

∫ ∫
Ω

(−Py + Qx)dxdy.

Suppose u is a critcal point of J . We want to find the condition
on u. Let β be a variation of u in Cγ(Ω, R), and h = β′(0), i.e.,
h(x, y) = ∂

∂s
|s=0β(s)(x, y). Since β(s)| | ∂Ω = γ, we have h|∂Ω = 0.

Compute directly to get

d

ds

∣∣∣∣
s=0

J(β(s)) =

∫
Ω

∂L

∂u
h +

∂L

∂ux

hx +
∂L

∂uy

hy dxdy

=

∫
Ω

∂L

∂u
h +

(
∂L

∂ux

h

)
x

−
(

∂L

∂ux

)
x

h +

(
∂L

∂uy

h

)
y

−
(

∂L

∂uy

)
y

h dxdy

=

∫
Ω

(
∂L

∂u
−
(

∂L

∂ux

)
x

−
(

∂L

∂uy

)
y

)
h dxdy

+

∫
Ω

(
∂L

∂ux

h

)
x

+

(
∂L

∂uy

h

)
y

dxdy.

It follows from the Green’s formula (4.3.2) that the second term is∫
∂Ω

∂L

∂ux

h dy − ∂L

∂uy

h dx.

But h | ∂Ω = 0. So the line integral is zero. This shows that if u is a
critical point of J , then∫

Ω

(
∂L

∂u
−
(

∂L

∂ux

)
x

−
(

∂L

∂uy

)
y

)
h dxdy = 0
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for all smooth functions h : Ω → R that vanishes on ∂Ω.
A similar proof gives the following analogue of Lemma 4.0.15 for Rn.

Lemma 4.3.2. Let Ω ⊂ Rn be an open subset, and f : Ω̄ → R a
smooth map. If ∫

Ω

f(x)g(x) dx1 · · · dxn = 0

for all smooth g : Ω̄ → R that vanishes on ∂Ω, then f = 0.

Hence we have proved

Theorem 4.3.3. If u is a critical point of J defined by (4.3.1), then

(4.3.3)
∂L

∂u
−
(

∂L

∂ux

)
x

−
(

∂L

∂uy

)
y

= 0.

(This is the Euler-Lagrange equation of J defined by (4.3.1)).

Example 4.3.4. Let Ω ⊂ R2, α : ∂Ω → R a smooth function, and
L(u) = u2

x + u2
y for u ∈ C∞

γ (Ω, R). Use Theorem 4.3.3 to compute
directly to see that u is a critical point of the functional J defined by
L if and only if

uxx + uyy = 0.

4.4. Minimal surfaces.

Let M be an embedded surface in R3, and f : O → U a local coor-
dinate system on M , and Ω̄ ⊂ O a compact domain. By Proposition
3.3.4, the area of the parallelgram spanned by fx1 , fx2 is

√
det(gij). To

approximate the area of f(Ω), we first divide the domain Ω into small
squares, and approximate the area of the image of f of each square by
the area of the parallelgram spanned by fx14x1 and fx24x2, then we
sum up these approximations∑√

det(gij) 4x14x2.

So the area of f(Ω) is

area =

∫ ∫
Ω

√
det(gij(x)) dx1dx2 =

∫∫
Ω

√
g11g22 − g2

12 dx1dx2.

We want to show that if f(Ω) has minimum area among all surfaces in
R3 with fixed boundary f(∂Ω), then the mean curvature of M must be
zero. Since the condition for critical point of a variational functional is
computed locally and locally a surface in R3 is a graph, we may assume
that f : Ω → U is a graph and the variations are done through graphs.
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A surface in R3 is called minimal if its mean curvature H = 0.
We will show that if a surface M in R3 is a critical point of the area
functional then the mean cruvature of M must be zero, i.e., M is
minimal. In fact, we will prove that the Euler-Lagrangian equation for
the area functional is the equation H = 0.

Let u : O → R, and f(x1, x2) = (x1, x2, u(x1, x2)) be the graph of u.
Let Ω̄ ⊂ O. If M = f(Ω) has minimum area among all surfaces in R3

that have the same boundary as f(Ω), then u must be a critical point
of the area functional

A(u) =

∫ ∫
Ω

√
det(gij) dx1dx2.

It is computed in Example 3.3.2 that

gii = 1 + u2
xi

, g12 = ux1ux2 .

So det(gij) = (1 + u2
x1

+ u2
x2

). The area functional is

A(u) =

∫ ∫
Ω

(1 + u2
x1

+ u2
x2

)
1
2 dx1dx2.

By Theorem 4.3.3, u must satisfy the Euler-Lagrangian equation (4.3.3).
A direct computation gives(

(1 + u2
x1

+ u2
x2

)−
1
2 ux1

)
x1

+
(
(1 + u2

x1
+ u2

x2
)−

1
2 ux2

)
x2

= 0.

So we have

(1 + u2
x2

)ux1x1 − 2ux1ux2ux1x2 + (1 + u2
x1

)ux2x2

(1 + u2
x1

+ u2
x2

)
3
2

= 0.

But the left hand side is the mean curvature H of the graph of u (cf.
Example 3.4.6 formula (3.4.2)). So the mean curvature must be zero,
i.e., M is minimal. We have proved

Theorem 4.4.1. The Euler-Lagrangian equation of the area functional
A is H = 0.

5. Fundamental Theorem of surfaces in R3

Let M be an embedded surface in R3, and f : O → U ⊂ R3 a local
coordinate system on M . Our experience in curve theory tells us that
we should find a moving frame on the surface and then differentiate the
moving frame to get relations among the invariants. However, unlike
the curves, there do not have natural local orthonormal frames on
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general surfaces in R3. We will use several different moving frames F =
(v1, v2, v3) on the surface to derive the relations among local invariants.
Express the x and y derivatives of the local frame vi in terms of v1, v2, v3,
then their coefficients can be written in terms of the two fundamental
forms. Since (vi)xy = (vi)yx, we obtain a PDE relation for I and II.
This is the Gauss-Codazzi equation of the surface. Conversely, given
two symmetric bilinear forms g, b on an open subset O of R2 such that
g is positive definite and g, b satisfies the Gauss-Codazzi equation, then
by the Frobenius Theorem there exists a unique surface in R3 having
g, b as the first and second fundamental forms respectively.

5.1. Gauss-Codazzi equations in arbitrary local coordinates.

Let f : O → U ⊂ M be a local coordinate system of an embedded
surface M in R3. We use the frame (fx1 , fx2 , N), where

N =
fx1 × fx2

||fx1 × fx2||
is the unit normal vector field. Since fx1 , fx2 , N form a basis of R3, the
partial derivatives of fxi

and N can be written as linear combinations
of fx1 , fx2 and N . So we have

(5.1.1)

{
(fx1 , fx2 , N)x1 = (fx1 , fx2 , N)P,

(fx1 , fx2 , N)x2 = (fx1 , fx2 , N)Q,

where P = (pij), Q = (qij) are gl(3)-valued maps. This means that
fx1x1 = p11fx1 + p21fx2 + p31N,

fx2x1 = p12fx1 + p22fx2 + p32N,

Nx1 = p13fx1 + p23fx3 + p33N,


fx1x2 = q11fx1 + q21fx2 + q31N,

fx2x2 = q12fx1 + q22fx2 + q32N,

Nx2 = q13fx1 + q23fx3 + q33N.

Recall that the fundamental forms are given by

gij = fxi
· fxj

, `ij = −fxi
·Nxj

= fxixj
·N.

We want to express P and Q in terms of gij and hij. To do this, we
need the following Propositions.

Proposition 5.1.1. Let V be a vector space with an inner product ( , ),
v1, · · · , vn a basis of V , and gij = (vi, vj). Let ξ ∈ V , ξi = (ξ, vi), and
ξ =

∑n
i=1 xivi. Then 

x1

·
·

xn

 = G−1


ξ1

·
·
ξn

 ,
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where G = (gij).

Proof. Note that

ξi = (ξ, vi) = (
n∑

j=1

xjvj, vi) =
n∑

j=1

xj(vj, vi) =
n∑

j=1

gjixj.

So (ξ1, · · · , ξn)t = G(x1, · · · , xn)t. �

Proposition 5.1.2. The following statements are true:

(1) The gl(3) valued functions P = (pij) and Q = (qij) in equa-
tion (5.1.1) can be written in terms of gij, `ij, and first partial
derivatives of gij.

(2) The entries {pij, qij | 1 ≤ i, j ≤ 2} can be computed from the
first fundamental form.

Proof. We claim that

fxixj
· fxk

, fxixj
·N, Nxi

· fxj
, Nxi

·N,

can be expressed in terms of gij, `ij and first partial derivatives of gij.
Then the Proposition follows from Proposition 5.1.1. To prove the
claim, we proceed as follows:
(5.1.2)

fxixi
· fxi

= 1
2
(gii)xi

,

fxixj
· fxi

= 1
2
(gii)xj

, if i 6= j,

fxixi
· fxj

= (fxi
· fxj

)xi
− fxi

· fxjxi
= (gij)xi

− 1
2
(gii)xj

, if i 6= j

(5.1.3)


fxixj

·N = `ij,

Nxi
· fxj

= −`ij,

Nxi
·N = 0.

Let

G =

g11 g12 0
g12 g22 0
0 0 1

 .

By Proposition 5.1.1, we have
(5.1.4)

P =

g11 g12 0

g12 g22 0

0 0 1


 1

2
(g11)x1

1
2
(g11)x2 −`11

(g12)x1 − 1
2
(g11)x2

1
2
(g22)x1 −`12

`11 `12 0


Q =

g11 g12 0

g12 g22 0

0 0 1


1

2
(g11)x2 (g12)x2 − 1

2
(g22)x1 −`12

1
2
(g22)x1

1
2
(g22)x2 −`22

`12 `22 0
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This proves the Proposition. �

Formula (5.1.4) gives explicit formulas for entries of P and Q in terms
of gij and `ij. Moreover, they are related to the Christofell symbols Γi

jk

arise in the geodesic equation (4.2.6) in Theorem 4.2.1. Recall that

Γk
ij =

1

2
gkm[ij, m],

where (gij) is the inverse matrix of (gij), [ij, k] = gki,j +gjk,i−gij,k, and

gij,k =
∂gij

∂xk
.

Theorem 5.1.3. For 1 ≤ i, j ≤ 2, we have

(5.1.5) pji = Γj
i1, qji = Γj

i2

Proof. Note that (5.1.4) implies

p11 =
1

2
g11g11,1 + g12(g12,1 −

1

2
g11,2) = Γ1

11,

p12 =
1

2
g11g11,2 +

1

2
g12g22,1 = Γ1

21,

p21 =
1

2
g12g11,1 + g22(g12,1 −

1

2
g11,2) = Γ2

11,

p22 =
1

2
g12g11,2 +

1

2
g22g22,1 = Γ2

21,

q11 =
1

2
g11g11,2 +

1

2
g12g22,1 = Γ1

12,

q12 = g11(g12,2 −
1

2
g22,1) +

1

2
g12g22,2 = Γ1

22,

q21 =
1

2
g12g11,2 +

1

2
g22g22,1 = Γ2

12,

q22 = g12(g12,2 −
1

2
g22,1) +

1

2
g22g22,2 = Γ2

22,(5.1.6)

�

Note that

q11 = p12, q21 = p22.

Theorem 5.1.4. The Fundamental Theorem of surfaces in R3.
Suppose M is an embedded surface in R3, and f : O → U a local
coordinate system on M , and gij, `ij are the coefficients of I, II. Let
P, Q be the smooth gl(3)-valued maps defined in terms of gij and `ij by
(5.1.4). Then P, Q satisfy

(5.1.7) Px2 −Qx1 = [P, Q].
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Conversely, let O be an open subset of R2, (gij), (`ij) : O → gl(2)
smooth maps such that (gij) is positive definite and (`ij) is symmetric,
and P, Q : U → gl(3) the maps defined by (5.1.4). Suppose P, Q satis-
fies the compatibility equation (5.1.7). Let (x0

1, x
0
2) ∈ O, p0 ∈ R3, and

u1, u2, u3 a basis of R3 so that ui · uj = gij(x
0
1, x

0
2) and ui · u3 = 0 for

1 ≤ i, j ≤ 2. Then there exists an open subset O0 ⊂ O of (x0
1, x

0
2) and

a unique immersion f : O0 → R3 so that f maps O0 homeomorphically
to f(O0) such that

(1) the first and second fundamental forms of the embedded surface
f(O0) are given by (gij) and (`ij) respectively,

(2) f(x0
1, x

0
2) = p0, and fxi

(x0
1, x

0
2) = ui for i = 1, 2.

Proof. We have proved the first half of the theorem, and it remains
to prove the second half. We assume that P, Q satisfy the compati-
bility condition (5.1.7). So Frobenius Theorem 2.4.1 implies that the
following system has a unique local solution

(v1, v2, v3)x1 = (v1, v2, v3)P,

(v1, v2, v3)x2 = (v1, v2, v3)Q,

(v1, v2, v3)(x
0
1, x

0
2) = (u1, u2, u3).

Since (u1, u2, u3) is invertible, so is (v1, v2, v3).
We claim that vi · v3 = 0 for i = 1, 2. To see this, we let pij and qij

denote the ij-th entry of P and Q respectively. Then

(vi · v3)x1 = (vi)x1 · v3 + vi · (v3)x1 = p3i + pi3 = 0.

Similar argument implies that (vi · v3)x2 = q3i + qi3 = 0. But vi · v3

is zero at (x0
1, x

0
2). So by uniqueness of solution of ODE, we see that

vi · v3 = 0.
Next we want to solve 

fx1 = v1,

fx2 = v2,

f(x0
1, x

0
2) = p0.

The compatibility condition is (v1)x2 = (v2)x1 . But

(v1)x2 =
3∑

j=1

qj1vj, (v2)x1 =
3∑

j=1

pj2v2.

It follows from (5.1.4) that the second column of P is equal to the first
column of Q. So (v1)x2 = (v2)x1 , and hence there exists a unique f .
The rest of the theorem follows. �
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System (5.1.7) with P, Q defined by (5.1.4) is called the Gauss-
Codazzi equation for the surface f(O), which is a second order PDE
with 9 equations for six functions gij and `ij. Equaqtion (5.1.7) is
too complicated to memorize. It is more useful and simpler to just
remember how to derive the Gauss-Codazzi equation.

It follows from (5.1.1), (5.1.4), and (5.1.5) that we have

fxix1 =
2∑

j=1

pjifxj
+ `i1N =

2∑
j=1

Γj
i1fxj

+ `i1N,

fxix2 =
2∑

j=1

qj2=ifxj
+ `i2N =

2∑
j=1

Γj
i2fxj

+ `i2N,

where pij and qij are defined in (5.1.4).
So we have

(5.1.8) fxixj
= Γ1

ijfx1 + Γ2
ijfx2 + `ijN,

Proposition 5.1.5. Let f : O → R3 be a local coordinate system of an
embedded surface M in R3, and α(t) = f(x1(t), x2(t)). Then α satisfies
the geodesic equation (4.2.6) if and only if α′′(t) is normal to M at α(t)
for all t.

Proof. Differentiate α′ to get α′ =
∑2

i=1 fxi
x′i. So

α′′ =
2∑

i,j=1

fxixj
x′ix

′
j + fxi

x′′i

=
2∑

i,j,k=1

Γk
ijfxk

x′ix
′
j + `ijN + fxi

x′′i

=
2∑

i,j=1

(Γk
ijx

′
ix
′
j + x′′k)fxk

+ `ijN = 0 + `ijN = `ijN.

�

5.2. The Gauss Theorem.

Equation (5.1.7) is the Gauss-Codazzi equation for M .
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The Gaussian curvature K is defined to be the determinant of the
shape operator −dN , which depends on both the first and second fun-
damental forms of the surface. In fact, by Proposition 3.4.2

K =
`11`22 − `2

12

g11g22 − g2
12

.

We will show below that K can be computed in terms of gij alone.
Equate the 12 entry of equation (5.1.7) to get

(p12)x2 − (q12)x1 =
3∑

j=1

p1jqj2 − q1jpj2.

Recall that formula (5.1.6) gives {pij, qij | 1 ≤ i, j ≤ 2} in terms of
the first fundamental form I. We move terms involves pij, qij with
1 ≤ i, j ≤ 2 to one side to get

(5.2.1) (p12)x2 − (q12)x1 −
2∑

j=1

p1jqj2 − q1jpj2 = p13q32 − q13p32.

We claim that the right hand side of (5.2.1) is equal to

−g11(`11`22 − `2
12) = −g11(g11g22 − g2

12)K.

To prove this claim, use (5.1.4) to compute P, Q to get

p13 = −(g11`11 + g12`12), p32 = `12,

q13 = −(g11`12 + g12`22), q32 = `22.

So we get

(5.2.2) (p12)x2 − (q12)x1 −
2∑

j=1

p1jqj2 − q1jpj3 = g11(g11g22 − g2
12)K.

Hence we have proved the claim and also obtained a formula of K
purely in terms of gij and their derivatives:

K =
(p12)x2 − (q12)x1 −

∑2
j=1 p1jqj2 − q1jpj3

g11(g11g22 − g2
12)

.

This proves

Theorem 5.2.1. Gauss Theorem. The Gaussian curvature of a
surface in R3 can be computed from the first fundamental form.

The equation (5.2.2), obtained by equating the 12-entry of (5.1.7),
is the Gauss equation.
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A geometric quantity on an embedded surface M in Rn is called
intrinsic if it only depends on the first fundamental form I. Otherwise,
the property is called extrinsic, i.e., it depends on both I and II.

We have seen that the Gaussian curvature and geodesics are intrinsic
quantities, and the mean curvature is extrinsic.

If φ : M1 → M2 is a diffeomorphism and f(x1, x2) is a local coor-
dinates on M1, then φ ◦ f(x1, x2) is a local coordinate system of M2.
The diffeomorphism φ is an isometry if the first fundamental forms for
M1, M2 are the same written in terms of dx1, dx2. In particular,

(i) φ preserves anlges and arc length, i.e., the arc length of the
curve φ(α) is the same as the curve α and the angle between
the curves φ(α) and φ(β) is the same as the angle between α
and β,

(ii) φ maps geodesics to geodesics.

Euclidean plane geometry studies the geometry of triangles. Note
that triangles can be viewed as a triangle in the plane with each side
being a geodesic. So a natural definition of a triangle on an embedded
surface M is a piecewise smooth curve with three geodesic sides and
any two sides meet at an angle lie in (0, π). One important problem in
geometric theory of M is to understand the geometry of triangles on
M . For example, what is the sum of interior angles of a triangle on
an embedded surface M? This will be answered by the Gauss-Bonnet
Theorem.

Note that the first fundamental forms for the plane

f(x1, x2) = (x1, x2, 0)

and the cylinder

h(x1, x2) = (cos x1, sin x1, x2)

have the same and is equal to I = dx2
1 + dx2

2, and both surfaces have
constant zero Gaussian curvature (cf. Examples 3.4.3 and 3.4.5). We
have also proved that geodesics are determined by I alone. So the
geometry of triangles on the cylinder is the same as the geometry of
triangles in the plane. For example, the sum of interior anlges of a
triangle on the plane (and hence on the cylinder) must be π. In fact,
let φ denote the map from (0, 2π) × R to the cylinder minus the line
(1, 0, x2) defined by

φ(x1, x2, 0) = (cos x1, sin x1, x2).

Then φ is an isometry.
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5.3. Gauss-Codazzi equation in orthogonal coordinates.

If the local coordinates x1, x2 are orthogonal, i.e., g12 = 0, then
the Gauss-Codazzi equation (5.1.7) becomes much simplier. Instead
of putting g12 = 0 to (5.1.7), we derive the Gauss-Codazzi equation
directly using an o.n. moving frame. We write

g11 = A2
1, g22 = A2

2, g12 = 0.

Let

e1 =
fx1

A1

, e2 =
fx2

A2

, e3 = N.

Then (e1, e2, e3) is an o.n. moving frame on M . Write{
(e1, e2, e3)x1 = (e1, e2, e3)P̃ ,

(e1, e2, e3)x2 = (e1, e2, e3)Q̃.

Since (e1, e2, e3) is orthogonal, P̃ , Q̃ are skew-symmetric. Moreover,

p̃ij = (ej)x1 · ei, q̃ij = (ej)x2 · ei.

A direct computation gives

(e1)x1 · e2 =

(
fx1

A1

)
x1

· fx2

A2

=
fx1x1 · fx2

A1A2

=
(fx1 · fx2)x1 − fx1 · fx1x2

A1A2

= −
(1

2
A2

1)x2

A1A2

= −(A1)x2

A2

.

Similar computation gives the coefficients p̃ij and q̃ij:
(5.3.1)

P̃ =

 0
(A1)x2

A2
− `11

A1

− (A1)x2

A2
0 − `12

A2
`11
A1

`12
A2

0

 , Q̃ =

 0 − (A2)x1

A1
− `12

A1
(A2)x1

A1
0 − `22

A2
`12
A1

`22
A2

0


To get the Gauss-Codazzi equation of the surface parametrized by

an orthogonal coordinates we only need to compute the 21-th, 31-th,
and 32-the entry of the following equation

(P̃ )x2 − (Q̃)x1 = [P̃ , Q̃],
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and we obtain

(5.3.2)


−
(

(A1)x2

A2

)
x2

−
(

(A2)x1

A1

)
x1

=
`11`22−`212

A1A2
,(

`11
A1

)
x2

−
(

`12
A1

)
x1

=
`12(A2)x1

A1A2
+

`22(A1)x2

A2
2(

`12
A2

)
x2

−
(

`22
A2

)
x1

= − `11(A2)x1

A2
1

− `12(A1)x2

A1A2
.

The first equation of (5.3.2) is called the Gauss equation. Note that
the Gaussian curvature is

K =
`11`22 − `2

12

(A1A2)2
.

So we have

(5.3.3) K = −

(
(A1)x2

A2

)
x2

+
(

(A2)x1

A1

)
x1

A1A2

.

We have seen that the Gauss-Codazzi equation becomes much sim-
pler in orthogonal coordinates. Can we always find local orthogonal
coordinates on a surface in R3? This question can be answered by the
following theorem, which we state without a proof.

Theorem 5.3.1. Suppose f : O → R3 be a surface, x0 ∈ O, and
Y1, Y2 : O → R3 smooth maps so that Y1(x0), Y2(x0) are linearly in-
dependent and tangent to M = f(O) at f(x0). Then there exist open
subset O0 of O containing x0, open subset O1 of R2, and a diffeomor-
phism h : O1 → O0 so that (f ◦ h)y1 and (f ◦ h)y2 are parallel to Y1 ◦ h
and Y2 ◦ h.

The above theorem says that if we have two linearly independent
vector fields Y1, Y2 on a surface, then we can find a local coordinate
system φ(y1, y2) so that φy1 , φy2 are parallel to Y1, Y2 respectively.

Given an arbitrary local coordinate system f(x1, x2) on M , we apply
the Gram-Schmidt process to fx1 , fx2 to construct smooth o.n. vector
fields e1, e2:

e1 =
fx1√
g11

,

e2 =

√
g11(fx2 − g12

g11
fx1)√

g11g22 − g2
12

,

By Theorem 5.3.1, there exists new local coordinate system f̃(y1, y2)

so that ∂f̃
∂x1

and ∂f̃
∂x2

are parallel to e1 and e2. So the first fundamental
form written in this coordinate system has the form

g̃11dy2
1 + g̃22dy2

2.
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However, in general we can not find coordinate system f̂(y1, y2) so that

e1 and e2 are coordinate vector fields ∂f̂
∂y1

and ∂f̂
∂y2

because if we can

then the first fundamental form of the surface is I = dy2
1 + dy2

2, which
implies that the Gaussian curvature of the surface must be zero.

5.4. Line of curvature coordinates.

Suppose M is an embedded surface in R3, f : O → U ⊂ M a local
coordinate system, and p0 = f(x0) is not an umbilic point. This means
that the shape operator dNp0 has two distinct eigenvalues. Since dN is
smooth, there exists an open subset O0 of O containing x0 so that f(x)
is not umbilic for all x ∈ O0. We can use linear algebra to write down a
formula for two eigenvectors v1, v2 of dN on O0 and see that v1, v2 are
smooth on O0. Since dNp is self-adjoint with distinct eigenvalues, v1

and v2 are perpendicular. By Theorem 5.3.1, we can change coordinates
so that the coordinate vector fields are parallel to v1 and v2. This means

that we may change coordinates f̃ : O1 → U1 ⊂ M ⊂ R3 so that ∂f̃
∂y1

and ∂f̃
∂y2

are parallel to v1, v2 respectively. In this new coordinates,

g̃12 = f̃y1 · f̃y2 = 0

because v1 ·v2 = 0. But since (f̃)y1 and (f̃)y2 are in the principal direc-
tions, the shape operator is diagonalized with respect to this eigenbasis.
Hence

˜̀
12 = 0.

In other words, both I, II are diagonalized. We call such coordinates
line of curvature coordinates .

Therefore we have proved

Theorem 5.4.1. If M ⊂ R3 is an embedded surface and p0 ∈ M is
not umbilic, then there exists a local line of curvature coordinate system
f : O → U ⊂ M ⊂ near p0, i.e.,

g12 = fx1 · fx2 = 0, `12 = fx1x2 ·N = 0,

or equivalently,

I = A2
1 dx2

1 + A2
2 dx2

2, II = `11 dx2
1 + `22 dx2

2.

Theorem 5.4.2. Suppose f(x1, x2) is a local line of curvature coordi-
nate system on an embedded surface M in R3 with I, II as in Theorem
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5.4.1. Then the Gauss-Codazzi equation is(
(A1)x2

A2

)
x2

+

(
(A2)x1

A1

)
x1

= −`11`22

A1A2

,(5.4.1) (
`11

A1

)
x2

=
`22(A1)x2

A2
2

(5.4.2) (
`22

A2

)
x1

=
`11(A2)x1

A2
1

.(5.4.3)

Proof. This theorem can be proved either by substituting `12 = 0 into
(5.3.2) or derive directly. But we will derive it directly. Let e1, e2, e3

be the o.n. basis so that

e1 =
fx1

A1

, e2 =
fx2

A2

, e3 = N,

and (ei)x1 · ej = pji, (ei)x2 · ej = qij. A direct computation gives

(5.4.4)



(e1, e2, e3)x1 = (e1, e2, e3)

 0
(A1)x2

A2
− `11

A1

− (A1)x2

A2
0 0

`11
A1

0 0

 ,

(e1, e2, e3)x2 = (e1, e2, e3)

 0 − (A2)x1

A1
0

(A2)x1

A1
0 − `22

A2

0 `22
A2

0

 .

The Gauss-Codazzi equation is Px2−Qx1 = [P, Q]. Since P, Q are skew
symmetric, we get 3 equations (the 12, 13, and 23 entries) as stated in
the theorem. �

6. Surfaces in R3 with K = −1

We will show that there exists line of curvature coordinates f(x, y)
so that the angle u between asymptotic lines satisfies the sine-Gordon
equation (SGE):

uxx − uyy = sin u.

In fact, we prove that there is a one to one correspondence between
local solutions u of the SGE with Im(u) ⊂ (0, π) and local surfaces in
R3 with K = −1 up to rigid motions. We also prove
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(1) the classical Bäcklund transformations that generate infinitely
many surfaces of K = −1 in R3 from a given one by solving a
system of compatible ODEs.

(2) the Hilbert Theorem that there is no complete K = −1 surfaces
in R3.

6.1. K = −1 surfaces in R3 and the sine-Gordon equation.

Suppose M be a surface in R3 with K = −1, and λ1, λ2 are the two
principal curvatures. Since K = λ1λ2 = −1, λ1 6= λ2, i.e., there are no
umbilic points. Hence we can find local line of curvature coordinates
f(x1, x2) on M . Assume the fundamental forms are

I = A2
1 dx2

1 + A2
2 dx2

2, II = `11 dx2
1 + `22 dx2

2.

Then the prinicpal curvatures are

λ1 =
`11

A2
1

, λ2 =
`22

A2
2

.

But λ1λ2 = −1, so we may assume that there exists a smooth function
q so that

λ1 =
`11

A2
1

= tan q, λ2 =
`22

A2
2

= − cot q,

i.e.,

(6.1.1)
`11

A1

= A1 tan q,
`22

A2

= −A2 cot q.

Since A1, A2, `11, `22 satisfy the Gauss-Codazzi equation, substitue (6.1.1)
to the Codazzi equations (5.4.2) and (5.4.3) to get

(A1 tan q)x2 = − cot q (A1)x2 ,

(−A2 cot q)x1 = tan q (A2)x1 .

Compute directly to get

(A1)x2 tan q + A1 sec2 q qx2 = − cot q (A1)x2 ,

which implies that

(tan q + cot q)(A1)x2 = −A1(sec
2 q) qx2 .

So we obtain
(A1)x2

A1

= − sin q

cos q
qx2 .

Use a similar computation to get

(A2)x1

A2

=
cos q

sin q
qx1 .
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In other words, we have

(log A1)x2 = (log cos q)x2 , (log A2)x1 = (log sin q)x1 .

Hence there exist c1(x1) and c2(x2) so that

log A1 = log cos q + c1(x1), log A2 = log sin q + c2(x2),

i.e.,

A1 = ec1(x1) cos q, A2 = ec2(x2) sin q.

Because I is positive definite, A1, A2 never vanishes. So we may as-
sume both sin q and cos q are positive, i.e., q ∈ (0, π

2
). Now change

coordinates to (x̃1(x1), x̃2(x2)) so that

dx̃1

dx1

= ec1(x1),
dx̃2

dx2

= ec2(x2).

Since
∂f

∂x̃1

=
∂f

∂x1

∂x1

∂x̃1

=
∂f

∂x1

e−c1(x1),

||fx̃1|| = cos q. Similar calculation implies that ||fx̃2|| = sin q. Since
x̃i is a function of x̃i alone, fx̃i

is parallel to fxi
. So (x̃1, x̃2) is also a

line of curvature coordinate system and the coefficients of II in (x̃1, x̃2)
coordinate system is

˜̀
11 = tan q cos2 q = sin q cos q, ˜̀

22 = − cot q sin2 q = − sin q cos q.

Therefore, we have proved part of the following Theorem:

Theorem 6.1.1. Let M2 be a surface in R3 with K = −1. Then locally
there exists line of curvature coordinates x1, x2 so that

(6.1.2) I = cos2 q dx2
1 + sin2 q dx2

2, II = sin q cos q (dx2
1 − dx2

2),

where 2q is the angle between two asymptotic directions. Moreover, the
Gauss-Codazzi equation is the sine-Gordon equation

(6.1.3) qx1x1 − qx2x2 = sin q cos q.

Proof. It remains to compute the Gauss-Codazzi equation. Let

e1 =
fx1

cos q
, e2 =

fx2

sin q
, e3 = N =

fx1 × fx2

||fx1 × fx2||
.

Write

(e1, e2, e3)x1 = (e1, e2, e3)P, (e1, e2, e3)x2 = (e1, e2, e3)Q.
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We have given formulas for P, Q in (5.4.4) when (x1, x2) is a line of
curvature coordinate system. Since A1 = cos q, A2 = sin q, and `11 =
−`22 = sin q cos q, we have
(6.1.4)

P =

 0 −qx2 − sin q
qx2 0 0
sin q 0 0

 , Q =

 0 −qx1 0
qx1 0 cos q
0 − cos q 0

 .

A direct computation shows that Codazzi equations are satified auto-
matically, i.e., the 13 and 23 entries of Px2 − Qx1 are equal to the 13
and 23 entries of [P, Q] respectively. The Gauss equation (equating the
12 entry) gives

−qx2x2 + qx1x1 = sin q cos q.

Since II = sin q cos q (dx2
1−dx2

2), fx1±fx2 are asymptotic directions.
Use I to see that fx1 ± fx2 are unit vectors. Since

(fx1 + fx2) · (fx1 − fx2) = cos2 q − sin2 q = cos(2q),

the angle between the asymptotic directions fx1 + fx2 and fx1 − fx2 is
2q. �

A consequence of the proof of the above theorem is

Corollary 6.1.2. Let P, Q be as in (6.1.4). Then system

(e1, e2, e3)x1 = (e1, e2, e3)P, (e1, e2, e3)x2 = (e1, e2, e3)Q

is solvable if and only if q satisfies the SGE (6.1.3).

Let O(3) denote the space of all orthogonal 3× 3 matrices, and o(3)
the space of all skew-symmetric 3× 3 matrices. A map g : R2 → O(3)
is smooth if i ◦ g : R2 → gl(3) is smooth, where i : O(3) → gl(3) is the
inclusion.

It follows from the Fundamental Theorem of surfaces and Corollary
6.1.2 that The converse of Theorem 6.1.1 is true :

Theorem 6.1.3. Let q : O → R be a solution of the SGE (6.1.3),
p0 ∈ R3, (x0

1, x
0
2) ∈ O, and u1, u2, u3 an o.n. basis. Let P, Q : O → o(3)

be the maps defined by (6.1.4). Then there exists an open subset O1 of
(x0

1, x
0
2) in O and a unique solution (f, e1, e2, e3) : O1 → R3 ×O(3) for

the following system

(6.1.5)



(e1, e2, e3)x1 = (e1, e2, e3)P,

(e1, e2, e3)x2 = (e1, e2, e3)Q,

fx1 = cos q e1,

fx2 = sin q e2,

f(x0
1, x

0
2) = p0, e1(x

0
1, x

0
2) = u1, e2(x

0
1, x

0
2) = u2.
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Moreover, if sin q cos q > 0 on O1, then f(O1) is an immersed surface
with K = −1 and the two fundamental forms are of the form (6.1.2).

In other words, there is a 1-1 correspondence between solutions q
of the SGE (6.1.3) with Im(q) ⊂ (0, π

2
) and local surfaces of R3 with

K = −1 up to rigid motion.
Let f(x1, x2) be a local line of curvature coordinate system given in

Theorem 6.1.1 of an embedded surface M in R3 with K = −1, and
q the corresponding solution of the SGE (6.1.3). The SGE is a non-
linear wave equation, and (x1, x2) is the space-time coordinate. We
have proved that fx1 ± fx2 are asymptotic directions. If we make a
change of coordinates x1 = s + t, x2 = s − t, then fs = fx1 + fx2 and
ft = fx1 − fx2 . A direct computation shows that the two fundamental
forms written in (s, t) coordinates are

(6.1.6)

{
I = ds2 + 2 cos 2q dsdt + dt2,

II = sin 2q ds dt,

and the SGE (6.1.3) becomes

(6.1.7) 2qst = sin(2q).

A local coordinate system (x, y) on a surface f(x, y) in R3 is called
an asymptotic coordinate system if fx, fy are parallel to the asymptotic
direction, i.e., `11 = `22 = 0. Note that the (s, t) coordinate constructed
above for K = −1 surfaces in R3 is an asymptotic coordinate system
and s, t are arc length parameter. This coordinate system is called the
Tchbyshef coordinate system for K = −1 surfaces in R3.

6.2. Moving frame method.

If P, Q are skew-symmetric, then so is [P, Q] = PQ−QP because

(PQ−QP )t = QtP t−P tQt = (−Q)(−P )−(−P )(−Q) = −(PQ−QP ).

We use Cartan’s method of moving frames to derive the local theory
of surfaces in R3. This method uses differential forms instead of vector
fields to derive the Gauss-Codazzi equation.

Proposition 6.2.1. Let O be an open subset of R2, and P = (pij), Q =
(qij) smooth maps from O to o(3). Let wij = pijdx1 + qijdx2. Then the
following statements are equivalent:

(i)

{
gx1 = gP,

gx2 = gQ
is solvable,

(ii) −Px2 + Qx1 = [P, Q],
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(iii)

(6.2.1) dwij = −
3∑

k=1

wik ∧ wkj

Proof. The equivalence of (i) and (ii) is given by Corollary 2.4.2. It
remains to prove (ii) if and only if (iii). A direct computation gives

dwij = d(pijdx1 + qijdx2) = (−(pij)x2 + (qij)x1) dx1 ∧ dx2, and

−
∑

k

wik ∧ wkj = −
∑

k

(pikdx1 + qikdx2) ∧ (pkjdx1 + qkjdx2)

= −
∑

k

(pikqkj − qikpkj)dx1 ∧ dx2

= −[P, Q]ijdx1 ∧ dx2.

So (ii) and (iii) are equivalent. �

We introduce some notations. Let wij be 1-forms for 1 ≤ i, j ≤ 3.
Then w = (wij) is called a gl(3)-valued 1-form. Let τ = (τij) be a gl(3)-
valued 1-form. Let τ ∧ w denote the gl(3)-valued 1-form whose ij-th
entry is

∑3
k=1 τik ∧wkj. Use matrix notation, (6.2.1) can be written as

(6.2.2) dw = −w ∧ w,

which is called the Maurer-Cartan equation.
Once we get used to computations involving matrix valued maps and

differential forms, we can obtain the Maurer-Cartan equation easily as
follows: Because w = g−1dg, we have

dw = d(g−1) ∧ dg + g−1d(dg) = −g−1dg g−1 ∧ dg + 0 = −w ∧ w,

i.e., w satisfies (6.2.2).
Since wij = −wji, wii = 0. So (6.2.1) becomes

(6.2.3)


dw12 = −w13 ∧ w32,

dw13 = −w12 ∧ w23,

dw23 = −w21 ∧ w13,

Lemma 6.2.2. Cartan’s Lemma If θ1, θ2 are linearly independent 1-
forms on an open subset O of R2 at each point of O, then there exists
a unique θ12 satisfies

(6.2.4)

{
dθ1 = −θ12 ∧ θ2,

dθ2 = −θ21 ∧ θ1,
where θ12 + θ21 = 0.
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Proof. Suppose θi = Ai dx+Bi dy with i = 1, 2, and θ12 = p dx+ q dy.
Then (6.2.4) implies that

(6.2.5)

{
−pB2 + qA2 = −(A1)y + (B1)x,

pB1 − qA1 = −(A2)y + (B2)x.

Since θ1, θ2 are linearly independent at every point, A1B2 −A2B1 6= 0.
So the linear system (6.2.5) has a unique solution p, q. �

Let f : O → U ⊂ M be a local coordinate system of the embed-
ded surface M in R3. When we view f as a map from O to R3, the
differential of f is

df = fx1dx1 + fx2dx2.

Let πi : M → R3 be the function defined by πi(y1, y2, y3) = yi. The
differential

(dπi)f(q) = d(fi)q.

Let π = (π1, π2, π3) : M → R3. Then π is the inclusion map, and

dπf(q) = dfq = fx1dx1 + fx2dx2.

Since dx1, dx2 are 1-forms dual to the basis fx1 , fx2 of TM , the re-
striction of dπ to each TMp is the identity map. Suppose e1, e2 are
smooth orthonormal vector fields of M defined on f(O), and w1, w2

are dual 1-form on M , i.e., wi(ej) = δij. Since dfq = dπf(q) is the
identiy map, by Corollary 3.1.7 we have

df = θ1e1 + θ2e2.

Let e3 = N be the unit normal vector field. Set

(6.2.6) wij = dei · ej, 1 ≤ i, j ≤ 3.

Let g = (e1, e2, e3). Rewrite (6.2.6) as

dg = gw.

Differentiate ei · ej = δij to get

wij + wji = 0,

i.e., w = (wij) is a o(3)-valued 1-form. The Gauss-Codazzi equation is
the compatibility condition for dg = gw. So it follows from Proposition
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6.2.1 that the Gauss-Codazzi equation for M is the Maurer-Cartan
equation dw = −w ∧ w. Since wii = 0, the Maurer-Cartan equation is

(6.2.7)


dw12 = −w13 ∧ w32,

dw13 = −w12 ∧ w23,

dw23 = −w21 ∧ w13.

Differentiate df = w1e1 + w2e2 to get

0 = d(df) = dw1e1 − w1 ∧ de1 + dw2e2 − w2 ∧ de2

= dw1e1 − w1 ∧ (w21e2 + w31e3) + dw2e2 − w2 ∧ (w12e1 + w32e3)

= (dw1 − w2 ∧ w12)e1 + (dw2 − w1 ∧ w21)e2 − (w1 ∧ w31 + w2 ∧ w32)e3.

So we have
(6.2.8)
(dw1 −w2 ∧w12)e1 + (dw2 −w1 ∧w21)e2 − (w1 ∧w31 + w2 ∧w32)e3 = 0

The coefficients of e1, e2 are zero imply that

(6.2.9)

{
dw1 − w2 ∧ w12 = 0,

dw2 − w1 ∧ w21 = 0,

where w12 = −w21. Equation (6.2.9) is called the structure equation.
It follows from the Cartan Lemma 6.2.2 that w12 can be computed in
terms of w1, w2. But the first fundamental form is

I = w1 ⊗ w1 + w2 ⊗ w2.

So this proves that w12 only depends on I.
The coefficient of e3 in equation (6.2.8) is zero implies that

(6.2.10) w1 ∧ w31 + w2 ∧ w32 = 0.

Write
w31 = h11w1 + h12w2, w32 = h21w1 + h22w2.

Then (6.2.10) implies that

h12w1 ∧ w2 + h21w2 ∧ w1 = 0.

So h12 = h21. The shape operator is

−dN = −de3 = −(w13e1 + w23e2) = w31e1 + w32e2 =
∑
ij

hijwiej.

Because e1, e2 are orthonormal, h12 = h21 means that dN is self-adjoint.
This gives a proof of Proposition 3.3.1 via differential forms.

By definition of II, we see that

II =
∑
ij

hijwi ⊗ wj,
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The mean and the Gaussian curvature are

H = h11 + h22, K = h11h22 − h2
12.

The first equation of the Gauss-Codazzi equation (6.2.3) is

dw12 = −w13 ∧ w32 = w31 ∧ w32 = (h11w1 + h12w2) ∧ (h12w1 + h22w2)

= (h11h22 − h2
12)w1 ∧ w2 = Kw1 ∧ w2.

So we have
dw12 = Kw1 ∧ w2.

But we have proved that w12 can be computed from w1, w2. So K
depends only on I. This gives another proof of the Gauss Theorem
5.2.1 using differential forms.

We summerize Cartan’s moving frame method. Let M be an em-
bedded surface in R3, e1, e2 be a local o.n. tangent frame on an open
subset U of M , and w1, w2 the dual 1-form. Let e3 be the unit normal
field on M , and

wij = dej · ei, 1 ≤ i, j ≤ 3.

Then:

(1) The first and second fundametnal forms of M are{
I = w2

1 + w2
2,

II = w1 ⊗ w31 + w2 ⊗ w32.

(2) w1, w2, wij satisfy the structure equation

(6.2.11)

{
dw1 = −w12 ∧ w2,

dw2 = −w21 ∧ w1.
,

and the Gauss and Codazzi equation

(6.2.12)


dw12 = −w13 ∧ w32,

dw13 = −w12 ∧ w23,

dw23 = −w21 ∧ w23.

(3) Write w3i = hi1w1 +hi2w2. Then hij = hji, hence II is symmet-
ric.

(4)

(6.2.13) dw12 = −w13 ∧ w32 = Kw1 ∧ w2.

(5) w12 only depend on I and can be solved using the structure
equation (6.2.11) and the Gaussian curvature K can be com-
puted using I, namely

dw12 = Kw1 ∧ w2.
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Next we state the Fundamental Theorem of surfaces in R3 in terms
of differential forms. Given two symmetric bilinar forms

I =
∑
ij

gijdxidxj, II =
∑
ij

`ijdxidxj

on an open subset O of R2 such that I is positive definite. First, we
complete the square for I to get an orthonormal dual 1-form:

I = g11

(
dx1 +

g12

g11

dx2

)2

+
g11g22 − g2

12

g11

dx2
2.

Then I = w2
1 + w2

2, where

w1 =
√

g11

(
dx1 +

g12

g11

dx2

)
, w2 =

√
g11g22 − g2

12

g11

dx2.

Let w12 be the unique 1-form satisfies the structure equation (use the
proof of Cartan’s lemma to find the formula of w12). Note that w31

and w32 can be solved algebraically by writing

II =
∑
ij

`ij dxidxj = w1 ⊗ w31 + w2 ⊗ w32.

Suppose w1, w2, wij satisfy the structure (6.2.11) and Gauss-Codazzi
equation (6.2.12). Then given q0 ∈ O, p0 ∈ R3, and an o.n. basis
u1, u2, u3 of R3, we claim that there exists a unique solution (f, e1, e2, e3)
for

(6.2.14)


df = w1e1 + w2e2,

dei =
∑3

j=1 wjiej, 1 ≤ i, j ≤ 3,

(f, e1, e2, e3)(qo) = (p0, u1, u2, u3).

with initial data (p0, u1, u2, u3). To prove the claim, we only need to
check the compatibility condition. Note that solvability of the first
equation of (6.2.14) is d(w1e1 + w2e2) = 0, which is the structure
equation (6.2.9). The solvability of the second equation of (6.2.14)
is the Gauss-Codazzi equation. This proves the claim.

We give an example using Cartan’s moving frame method below:

Theorem 6.2.3. Hilbert Theorem for K = −1 surfaces in R3

Suppose M is a surface in R3 with K = −1 given by an entire Tchebyshef
asymptotic coordinate system (s, t), i.e., there is a coordinate system
f : R2 → R3 with f(R2) = M so that the first and second fundamental
forms are of the form (6.1.6). Then the area of M is less than 2π.
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Proof. We have proved that I = ds2 + 2 cos 2q dsdt + dt2. Complete
square to get an o.n. dual 1-forms:

I = (ds + cos 2q dt)2 + (sin 2qdt)2.

Let

w1 = ds + cos 2q dt, w2 = sin 2qdt.

We use the structure equation (6.2.11) to compute w12. Let

w12 = Ads + Bdt.

Structure equation (6.2.11) implies that

(6.2.15)

{
−2 sin 2q qs = −A sin 2q,

2 cos 2q qs = −B + A cos 2q.

So A = 2qs and B = 0, i.e.,

w12 = 2qsds.

The Gauss equation is dw12 = Kw1 ∧ w2, so we have

(6.2.16) dw12 = −w1 ∧ w2 = − sin q cos q ds ∧ dt.

The area of M is

Area(M) =

∫ ∫
R2

w1 ∧ w2 =

∫ ∫
R2

(ds + cos 2q dt) ∧ sin 2q dt

=

∫ ∞

−∞

∫ ∞

−∞
sin 2q dsdt by (6.2.16)

=

∫ ∞

−∞

∫ ∞

−∞
−dw12, by the Green′s formula (4.3.2)

= lim
r→∞

∫ r

−r

∫ r

−r

−w12 = − lim
r→∞

∮
2qsds

= −2 lim
r→∞

∫ r

−r

qs(s,−r)ds +

∫ −r

r

qs(s, r)ds

= −2 lim
r→∞

(q(r,−r)− q(−r,−r)) + (q(−r, r)− q(r, r)).

Since I is positive definite, 1 − cos2 2q = sin2 2q > 0. We may assume
2q ∈ (0, π). So the above equation implies that the area of M is less
than 2π. �
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6.3. Bäcklund Theorem.

The idea of Bäcklund transformations comes from the study of line
congruences. A line congruence in R3 is a two-parameter family of
lines

L(u, v) : x(u, v) + τξ(u, v), −∞ < τ < ∞,

i.e., L(u, v) is the line through x(u, v) and parallel to ξ(u, v). A surface
M given by

Y (u, v) = x(u, v) + t(u, v)ξ(u, v)

for some smooth function t is called a focal surface of the line congru-
ence if the line L(u, v) is tangent to M at Y (u, v) for all (u, v). Hence
ξ(u, v) lies in the tangent plane of M at Y (u, v), which is spanned by

Yu = xu + tuξ + tξu, Yv = xv + tvξ + tξv.

Note that v1, v2, v3 are linearly dependent if and only if det(v1, v2, v3) =
0. So t satisfies the following quadratic equation:

det(ξ, xu + tuξ + tξu, xv + tvξ + tξv) = 0.

This implies

0 = det(ξ, xu + tξu, xv + tξv)

= t2 det(ξ, ξu, ξv) + t(det(ξ, ξu, xv) + det(ξ, xu, ξv)) + det(ξ, xu, xv)

Note that x, ξ are given and the above equation is a quadratic equation
in t. In general, this quadratic equation has two distinct solutions for
t. Hence generically each line congruence has two focal surfaces, M
and M∗. This results in a diffeomorphism ` : M → M∗ such that the
line joining p and p∗ = `(p) is tangent to both M and M∗. We will call
` also a line congruence.

A line congruence ` : M → M∗ is called a Bäcklund transformation
with constant θ if the angle between the normal of M at p and the
normal of M∗ at p∗ = `(p) is θ and the distance between p and p∗ is
sin θ for all p ∈ M . We restate the definition below:

Definition 6.3.1. Let M, M∗ be two surfaces in R3. A diffeomorphism
` : M → M∗ is called a Bäcklund transformation with constant θ if for
any P ∈ M ,

(1) the line joing P and P ∗ = `(P ) is tangent to M at P and to
M∗ at P ∗ respectively,

(2) the distance between P and P ∗ is sin θ,
(3) the angle between the normal NP of M at P and N∗

P ∗ of M∗ at
P ∗ is equal to θ.

In 1883, A. Bäcklund proved:
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Theorem 6.3.2. Bäcklund Theorem. Let M and M∗ be two sur-
faces in R3. If ` : M → M∗ is a Bäcklund transformation with constant
θ, then both M and M∗ have Gaussian curvature −1.

Proof. Let e1 denote the unit vector field on M so that

`(p) = p + sin θ e1(p)

for all p ∈ M . Let e2 be the unit vector field tangent to M that is
perpendicular to e1, and e3 = N the unit normal vector field on M .
Then e1, e2, e3 is a local o.n. frame on M . Let e∗1, e

∗
2 be the tangent

o.n. frame on M∗ so that e∗1 = −e1 (the direction of
−−−→
`(p)p), and e∗3 is

the unit normal of M∗. By assumption, the angle between e3 and e∗3 is
θ. So the two o.n. frames are related by

e∗1 = −e1,

e∗2 = cos θe2 + sin θe3,

e∗3 = − sin θe2 + cos θe3.

Let (wij) and (w∗
ij) be the so(3)-valued 1-form computed from

(6.3.1) dei =
∑

j

wjiej, de∗i =
∑

j

w∗
jie

∗
j .

Let f : O → R3 be a local parametrization of M , then

f ∗ = f + sin θ e1

is a local parametrization of M∗. Let w1, w2 be the dual coframe of
e1, e2, and w∗

1, w
∗
2 the dual coframe of e∗1, e

∗
2. So we have

(6.3.2) df = w1e1 + w2e2, df∗ = w∗
1e
∗
1 + w∗

2e
∗
2.

The relation of these dual coframes can be computed by differentiating
f and f ∗:

df∗ = w∗
1e
∗
1 + w∗

2e
∗
2

= −w∗
1e1 + w∗

2(cos θe2 + sin θe3) = d(f + sin θ e1)

= df + sin θ de1 by (6.3.2) and (6.3.1)

= w1e1 + w2e2 + sin θ (w21e2 + w31e3).

Compare coefficients of e1, e2, e3 of the above equation to get

w∗
1 = −w1,(6.3.3)

w∗
2 cos θ = w2 + sin θ w21,(6.3.4)

w∗
2 = w31.(6.3.5)
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So we have

(6.3.6) w31 cos θ = w2 + sin θ w21.

Use de∗i · e∗j = w∗
ij to compute

(6.3.7)
w∗

31 = de∗1 ·e∗3 = −de1 ·(− sin θe2+cos θe3) = sin θw21−cos θw31 = −w2.

Here we use (6.3.6). We also have

w∗
32 = de∗2 · e∗3 = (cos θde2 + sin θde3) · (− sin θe2 + cos θe3)

= cos2 θw32 − sin2 θw23 = w32.(6.3.8)

Let w3i =
∑

j hijwj, and K, K∗ the Gaussian curvature of M and M∗

respectively. Use (6.2.13), (6.3.7) and (6.3.8) to get

K∗w∗
1 ∧ w∗

2 = w∗
31 ∧ w∗

32 = −w2 ∧ w32 = h12w1 ∧ w2

= −K∗w1 ∧ w31 = −K∗h12w1 ∧ w2.

This implies that −K∗h12 = h12. Hence K∗ = −1. Since the situation
is symmetric, K = −1 too. �

Theorem 6.3.3. Given a surface M in R3, a constant 0 < θ < π, and
a unit vector v0 ∈ TMp0 not a principal direction, then there exists a
unique surface M∗ and a Bäcklund transformation ` : M → M∗ with

constant θ such that
−−−−→
p0`(p0) = (sin θ)v0.

Proof. To construct a Bäcklund transformation ` with constant θ is the
same as to find a unit vector field e1 on M so that the corresponding
frames wi and (wij) satisfy the equation (6.3.6). We can rewrite this
differential form equation as a system of first order PDE as follows.
Let v1, v2, v3 be a local o.n. frame on M so that v1, v2 are principal
directions. Let (x1, x2) be the local line of curvature coordinates con-
structed in Theorem 6.1.1, and q(x1, x2) the corresponding solution of
the SGE (6.1.3). We know from the proof of Theorem 6.1.1 that

θ1 = cos q dx1, θ2 = sin q dx2

are the 1-forms dual to v1, v2, and θij = dvj · vi = pijdx1 + qijdx2 is
given as follows:

θ12 = −qx2dx1 − qx1dx2,

θ13 = − sin q dx1,

θ23 = cos q dx2.
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Let q∗ denote the angle between v1 and e1, and e1, e2, e3 an o.n. frame
on M so that e3 = v3, i.e.,

(6.3.9)


e1 = cos q∗ v1 + sin q∗ v2,

e2 = − sin q∗ v1 + cos q∗ v2,

e3 = v3.

Let wij = dej · ei. Use (6.3.9) to get

w31 = de1 · e3 = (cos q∗ dv1 + sin q∗ dv2) · v3 = cos q∗ θ31 + sin q∗ θ32

= cos q∗ sin q dx1 − sin q∗ cos q dx2,

w2 = − sin q∗ θ1 + cos q∗ θ2 = − sin q∗ cos q dx1 + cos q∗ sin q dx2,

w21 = de1 · e2 = dq∗ + θ21 = dq∗ + qx2 dx1 + qx1 dx2.

Equate the coefficients of dx1 and dx2 of equation (6.3.6) to get{
− sin q∗ cos q + sin θ((q∗)x1 + qx2) = cos θ cos q∗ sin q,

cos q∗ sin q + sin θ((q∗)x2 + qx1) = − cos θ sin q∗ cos q.
(6.3.10)

Now we make a change of coordinates:

x1 = s + t, x2 = s− t,

i.e., (s, t) is the Tchebyshef asymptotic coordinate system. Note that

us = ux1 + ux2 , ut = ux1 − ux2 .

Add and substract the two equations of (6.3.10) and use (s, t) coordi-
nates, we see that (6.3.10) gives{

sin θ (q∗ + q)s = (1− cos θ) sin(q∗ − q),

sin θ (q∗ − q)t = (1 + cos θ) sin(q∗ + q).

So we have {
(q∗ + q)s = (1−cos θ)

sin θ
sin(q∗ − q),

(q∗ − q)t = (1+cos θ)
sin θ

sin(q∗ + q)

Let µ = (1−cos θ)
sin θ

. Then 1
µ

= 1+cos θ
sin θ

. So the above system becomes

(6.3.11)

{
(q∗ + q)s = µ sin(q∗ − q),

(q∗ − q)t = 1
µ

sin(q∗ + q),

i.e.,

(6.3.12)

{
(q∗)s = −qs + µ sin(q∗ − q),

(q∗)t = qt + 1
µ

sin(q∗ + q).
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To find the unit vector field e1 so that ` = f + sin θe1 is a Bäcklund
transformation is equivalent to solve the differential form equation
(6.3.6), which is equivalent to solve the PDE system (6.3.12).

By the Frobenius Theorem 2.4.1, the condition for system (6.3.12) to
be solvable is to equate the t-derivative of the first equation of (6.3.12)
and the s-derivative of the second equation of (6.3.12):

((q∗)s)t = −qst + µ cos(q∗ − q) (q∗ − q)t

= −qst + cos(q∗ − q) sin(q∗ + q),

= ((q∗)t)s = qst +
1

µ
cos(q∗ + q) (q∗ + q)s

= qst + cos(q∗ + q) sin(q∗ − q).

So the compatibility condition is

2qst = cos(q∗ − q) sin(q∗ + q)− cos(q∗ + q) sin(q∗ − q) = sin(2q),

i.e., q satisfies the SGE (6.1.7). �

We use BTq,µ to denote the system (6.3.11) (or (6.3.12)) for given q
and constant µ. The proof of the above theorem gives a result in PDE.

Corollary 6.3.4. Let µ be a non-zero real constant and q(s, t) a smooth
function. Then the system (6.3.11) for q∗ is solvable if and only if q
satisfies the SGE (6.1.7), i.e., 2qst = sin(2q). Moreover, if q∗ is a
solution of (6.3.11), then q∗ is also a solution of the SGE (6.1.7).

The above Corollary also implies that if q is a solution of the SGE
and a real constant µ, then the first order system BTq,µ (6.3.11) is
solvable for q∗ and the solution q∗ is again a solution of the SGE. So
we can solve the system BTq,µ of two compatible ODE to get a family
of solutions of SGE. If we apply this method again, we get a second
family of solutions. This gives an inifintely many families of solutions
from one given solution of SGE.

For example, the constant function q = 0 is a trivial solution of the
SGE. The system BT0,µ is{

αs = µ sin α,

αt = 1
µ

sin α.

It has explicit solution

α(s, t) = 2 tan−1
(
eµs+ 1

µ
t
)

.

We can apply Bäcklund transformation BTα,µ1 to this new solution α
to get another family of solutions. Note that this two system of ODEs
are not as easy to solve as BT0.µ. But instead of solving BTα,µ1 we
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can use the following classical Bianchi’s theorem, which says that the
second family of solutions can be constructed from the first family of
solutions by an explicit algebraic formula:

Theorem 6.3.5. Bianchi Permutability Theorem.
Let 0 < θ1, θ2 < π be constants so that sin θ2

1 6= sin θ2
2, and `i : M0 → Mi

Bäcklund transformations with constant θi for i = 1, 2. Then there
exists a unique surface M3 and Bäcklund transformations ˜̀

1 : M2 →
M3 and ˜̀

2 : M1 → M3 with constant θ1, θ2 respectively so that ˜̀
1 ◦ `2 =

˜̀
2 ◦ `1. Moreover, if qi is the solution of the SGE corresponding to Mi

for 0 ≤ i ≤ 3, then

(6.3.13) tan

(
q3 − q0

2

)
=

µ1 + µ2

µ1 − µ2

tan

(
q1 − q2

2

)
,

where µi = 1−cos θi

sin θi
.

The proof of the geometric part of the above theorem is rather long
and tidious (cf. []). But to prove that the function q3 defined by
(6.3.13) solves the system BTq1,µ2 and BTq2,µ1 can be done by a di-
rect computation. Equation (6.3.13) gives a formula of q3 in terms of
q0, q1, q2.

When q0 = 0, we have solved qi = 2 tan−1 e
µis+

1
µi

t
for i = 1, 2. So

apply (6.3.13) get a second family of solutions:

(6.3.14) tan
q12

2
=

µ1 + µ2

µ1 − µ2

(
e

µ1s+ 1
µ1

t − e
µ2s+ 1

µ2
t

1 + e
(µ1+µ2)s+( 1

µ1
+ 1

µ2
)t

)
.

Apply (6.3.13) again, we get a third family of solutions. To be more
precise, let µ1, µ2, µ3 be real numbers so that µ2

1, µ
2
2, µ

2
3 are distinct, q12

the solution defined by (6.3.14), and q23 the solution given by the same
formula (6.3.14) replacing µ1, µ2 by µ2, µ3. Then

tan
q123

2
=

µ1 + µ3

µ1 − µ3

tan

(
q12 − q23

2

)
.

We can continue this process to construct an infinitely many families
of explicit solutions of the SGE.
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