Geometric Inversion, 2D Grid

By Xah Lee. Date: .

geometric inversion of a 2d grid

geometric inversion 2021-09-22
geometric inversion 2021-09-22
geoInv = ((With[{x662 = #.#}, If[ x662 < 0.00000001, #, #/x662] ]) &);
cArray = CoordinateBoundsArray[{{-1, 1}, {-1, 1}}, Into[10] ];
hLines= (BlockMap[Line,#,2,1]&) /@ cArray;
vLines= (BlockMap[Line,#,2,1]&) /@ Transpose @ cArray;
gp1 = {hLines , vLines};
gp2 = gp1 /. Line[x_] :> Line[ geoInv /@ x ];
GraphicsGrid[{{Graphics[gp1, Axes->True ], Graphics[gp2, Axes->True ]}} ]

note that we apply the geometric inversion function on the grid points only, not on the lines themselfs. This results more artistic images. Normally, inversion of lines becomes circles, so you don't have the spider web kinda image.

〔see Geometric Inversion

geometric inversion of squares on grid

geometric inversion 2021-09-23
geometric inversion 2021-09-23
geoInv = ((With[{x662 = #.#}, If[ x662 < 0.00000001, #, #/x662] ]) &);

xRange=1;
gridDivN = 15;
δ=xRange 2/gridDivN;
sqWidth=δ * 8/10;
s=sqWidth/2;

squaresGP=
Table[
With[{ a={x-s,y-s},b={x+s,y-s},c={x+s,y+s},d={x-s,y+s}},
GraphicsComplex[{a,b,c,d},Line@{1,2,3,4,1}]
]
,{x,-xRange,xRange,δ},{y,-xRange,xRange,δ}];

gp2= squaresGP /. GraphicsComplex[x_, r__] :> GraphicsComplex[geoInv /@ x, r];

GraphicsGrid[{{Graphics[squaresGP, Axes->True ], Graphics[gp2, Axes->True, PlotRange->9 ]}} ]

geometric inversion of 2d grid, as tubes

WolframLang geometric inversion tube 2023-02-02
WolframLang geometric inversion tube 2023-02-02
geoInv = ((With[{x662 = # . #}, If[x662 < 0.00000001, #, #/x662]]) &)

lotsTubes =
  Table[Tube[{{x, y, 0}, {x + 1, y, 0}, {x + 1, y + 1, 0}, {x, y + 1,
      0}, {x, y, 0}}], {x, -5.5, 4.5, 1}, {y, -5.5, 4.5, 1}];
tubeGraphics = Graphics3D[lotsTubes]
geoInv = ((With[{x662 = # . #}, If[x662 < 0.00000001, #, #/x662]]) &);

ReplaceAll[tubeGraphics, Tube[pts_] :> Tube[geoInv /@ pts]]