Xah Talk Show 2025-06-02 Ep662 Wolfram Language Explore Machine Learning Features

xah talk show 2025-06-02 25be8
xah talk show 2025-06-02 25be8
xah talk show 2025-06-02 Wolfram Alpha 20d15
xah talk show 2025-06-02 Wolfram Alpha 20d15
xah talk show 2025-06-02 wl rsa keys
xah talk show 2025-06-02 wl rsa keys
xah talk show 2025-06-02 Wolfram alpha 346c4
xah talk show 2025-06-02 Wolfram alpha 346c4
xah talk show 2025-06-02 wl plot
xah talk show 2025-06-02 wl plot
xah talk show 2025-06-02 repl 20b81
xah talk show 2025-06-02 repl 20b81
xah talk show 2025-06-02 Wolfram language doc 20bf8
xah talk show 2025-06-02 Wolfram language doc 20bf8
xah talk show 2025-06-02 Wolfram language Classify 20ca1
xah talk show 2025-06-02 Wolfram language Classify 20ca1
xah talk show 2025-06-02 Wolfram language cryptography 20cbe
xah talk show 2025-06-02 Wolfram language cryptography 20cbe
xah talk show 2025-06-02 voxatron 20acf
xah talk show 2025-06-02 voxatron 20acf
(* demo the classify machine learning function *)

(* generate a list of random numbers between 0 and 10 *)
xRandomList = Table[ RandomInteger[{0,10}] , {10}]
(* {8, 0, 9, 1, 9, 9, 5, 3, 8, 10} *)

(* now create a list of pairs, if number is less than 5, lable it small, if it is greater or equal than 5, label it big. *)
xData = Map[ Function[x, If[ x < 5, x -> "small", x -> "big"]] , xRandomList]
(* {1 -> small, 10 -> big, 1 -> small, 7 -> big, 7 -> big, 0 -> small, 9 -> big, 1 -> small, 7 -> big, 6 -> big} *)

xclassifyFun = Classify[xData];

xclassifyFun[3]

(* 
 | Time elapsed: | Training example used: | Current best method: | Current accuracy: | Current loss: |
 |     3.7s      |          8/10          |  LogisticRegression  |       0.833       |     0.235     |
small
 *)