HTML Entity List
What is HTML Entity
A HTML Entity is a code to represent a character.
For example,
•
displays in browser as
•
- Character: •
- Name: BULLET
- Codepoint: 8226
- Codepoint hexadecimal: 2022
Purpose of HTML Entities
HTML Entities lets you represent a character without the character itself.
The most important use is to represent a character that is not allowed in HTML / XML syntax. For example,
- Use
&
for & - Use
<
for < - Use
>
for >
Other use is to allow characters that are not allowed in the file's charset. e.g. to represent a emoji heart ♥ . 〔see HTML: Charset and Encoding〕
Another use is for convenience of input. e.g. you may not know how to input a unicode bullet character
•
,
but you can represent it by
•
Different Forms of Character Entity
There are 3 forms of character entities.
&#number;
- where number is the character's Codepoint.
&#xhexadecimal;
- where number is the character's Codepoint in hexadecimal.
&name;
- Named entity. (only some characters have named entities)
To find any character's codepoint see: Unicode Search 😄
Complete List of Named Entities
Add a ampersand
&
before
and a colon after
;
Those rendered in a style like this are unicode compound characters. In many cases, there is a single unicode character for it, but i don't know why the HTML standard specified a compound.
Aacute
Á
aacute
á
Abreve
Ă
abreve
ă
ac
∾
acd
∿
acE
∾̳
Acirc
Â
acirc
â
acute
´
Acy
А
acy
а
AElig
Æ
aelig
æ
af
Afr
𝔄
afr
𝔞
Agrave
À
agrave
à
alefsym
ℵ
aleph
ℵ
Alpha
Α
alpha
α
Amacr
Ā
amacr
ā
amalg
⨿
AMP
&
amp
&
And
⩓
and
∧
andand
⩕
andd
⩜
andslope
⩘
andv
⩚
ang
∠
ange
⦤
angle
∠
angmsd
∡
angmsdaa
⦨
angmsdab
⦩
angmsdac
⦪
angmsdad
⦫
angmsdae
⦬
angmsdaf
⦭
angmsdag
⦮
angmsdah
⦯
angrt
∟
angrtvb
⊾
angrtvbd
⦝
angsph
∢
angst
Å
angzarr
⍼
Aogon
Ą
aogon
ą
Aopf
𝔸
aopf
𝕒
ap
≈
apacir
⩯
apE
⩰
ape
≊
apid
≋
apos
'
ApplyFunction
approx
≈
approxeq
≊
Aring
Å
aring
å
Ascr
𝒜
ascr
𝒶
Assign
≔
ast
*
asymp
≈
asympeq
≍
Atilde
Ã
atilde
ã
Auml
Ä
auml
ä
awconint
∳
awint
⨑
backcong
≌
backepsilon
϶
backprime
‵
backsim
∽
backsimeq
⋍
Backslash
∖
Barv
⫧
barvee
⊽
Barwed
⌆
barwed
⌅
barwedge
⌅
bbrk
⎵
bbrktbrk
⎶
bcong
≌
Bcy
Б
bcy
б
bdquo
„
becaus
∵
Because
∵
because
∵
bemptyv
⦰
bepsi
϶
bernou
ℬ
Bernoullis
ℬ
Beta
Β
beta
β
beth
ℶ
between
≬
Bfr
𝔅
bfr
𝔟
bigcap
⋂
bigcirc
◯
bigcup
⋃
bigodot
⨀
bigoplus
⨁
bigotimes
⨂
bigsqcup
⨆
bigstar
★
bigtriangledown
▽
bigtriangleup
△
biguplus
⨄
bigvee
⋁
bigwedge
⋀
bkarow
⤍
blacklozenge
⧫
blacksquare
▪
blacktriangle
▴
blacktriangledown
▾
blacktriangleleft
◂
blacktriangleright
▸
blank
␣
blk12
▒
blk14
░
blk34
▓
block
█
bne
=⃥
bnequiv
≡⃥
bNot
⫭
bnot
⌐
Bopf
𝔹
bopf
𝕓
bot
⊥
bottom
⊥
bowtie
⋈
boxbox
⧉
boxDL
╗
boxDl
╖
boxdL
╕
boxdl
┐
boxDR
╔
boxDr
╓
boxdR
╒
boxdr
┌
boxH
═
boxh
─
boxHD
╦
boxHd
╤
boxhD
╥
boxhd
┬
boxHU
╩
boxHu
╧
boxhU
╨
boxhu
┴
boxminus
⊟
boxplus
⊞
boxtimes
⊠
boxUL
╝
boxUl
╜
boxuL
╛
boxul
┘
boxUR
╚
boxUr
╙
boxuR
╘
boxur
└
boxV
║
boxv
│
boxVH
╬
boxVh
╫
boxvH
╪
boxvh
┼
boxVL
╣
boxVl
╢
boxvL
╡
boxvl
┤
boxVR
╠
boxVr
╟
boxvR
╞
boxvr
├
bprime
‵
Breve
˘
breve
˘
brvbar
¦
Bscr
ℬ
bscr
𝒷
bsemi
⁏
bsim
∽
bsime
⋍
bsol
\
bsolb
⧅
bsolhsub
⟈
bull
•
bullet
•
bump
≎
bumpE
⪮
bumpe
≏
Bumpeq
≎
bumpeq
≏
Cacute
Ć
cacute
ć
Cap
⋒
cap
∩
capand
⩄
capbrcup
⩉
capcap
⩋
capcup
⩇
capdot
⩀
CapitalDifferentialD
ⅅ
caps
∩︀
caret
⁁
caron
ˇ
Cayleys
ℭ
ccaps
⩍
Ccaron
Č
ccaron
č
Ccedil
Ç
ccedil
ç
Ccirc
Ĉ
ccirc
ĉ
Cconint
∰
ccups
⩌
ccupssm
⩐
Cdot
Ċ
cdot
ċ
cedil
¸
Cedilla
¸
cemptyv
⦲
cent
¢
CenterDot
·
centerdot
·
Cfr
ℭ
cfr
𝔠
CHcy
Ч
chcy
ч
check
✓
checkmark
✓
Chi
Χ
chi
χ
cir
○
circ
ˆ
circeq
≗
circlearrowleft
↺
circlearrowright
↻
circledast
⊛
circledcirc
⊚
circleddash
⊝
CircleDot
⊙
circledR
®
circledS
Ⓢ
CircleMinus
⊖
CirclePlus
⊕
CircleTimes
⊗
cirE
⧃
cire
≗
cirfnint
⨐
cirmid
⫯
cirscir
⧂
ClockwiseContourIntegral
∲
CloseCurlyDoubleQuote
”
CloseCurlyQuote
’
clubs
♣
clubsuit
♣
Colon
∷
colon
:
Colone
⩴
colone
≔
coloneq
≔
comma
,
commat
@
comp
∁
compfn
∘
complement
∁
complexes
ℂ
cong
≅
congdot
⩭
Congruent
≡
Conint
∯
conint
∮
ContourIntegral
∮
Copf
ℂ
copf
𝕔
coprod
∐
Coproduct
∐
COPY
©
copy
©
copysr
℗
CounterClockwiseContourIntegral
∳
crarr
↵
Cross
⨯
cross
✗
Cscr
𝒞
cscr
𝒸
csub
⫏
csube
⫑
csup
⫐
csupe
⫒
ctdot
⋯
cudarrl
⤸
cudarrr
⤵
cuepr
⋞
cuesc
⋟
cularr
↶
cularrp
⤽
Cup
⋓
cup
∪
cupbrcap
⩈
CupCap
≍
cupcap
⩆
cupcup
⩊
cupdot
⊍
cupor
⩅
cups
∪︀
curarr
↷
curarrm
⤼
curlyeqprec
⋞
curlyeqsucc
⋟
curlyvee
⋎
curlywedge
⋏
curren
¤
curvearrowleft
↶
curvearrowright
↷
cuvee
⋎
cuwed
⋏
cwconint
∲
cwint
∱
cylcty
⌭
Dagger
‡
dagger
†
daleth
ℸ
Darr
↡
dArr
⇓
darr
↓
dash
‐
Dashv
⫤
dashv
⊣
dbkarow
⤏
dblac
˝
Dcaron
Ď
dcaron
ď
Dcy
Д
dcy
д
DD
ⅅ
dd
ⅆ
ddagger
‡
ddarr
⇊
DDotrahd
⤑
ddotseq
⩷
deg
°
Del
∇
Delta
Δ
delta
δ
demptyv
⦱
dfisht
⥿
Dfr
𝔇
dfr
𝔡
dHar
⥥
dharl
⇃
dharr
⇂
DiacriticalAcute
´
DiacriticalDot
˙
DiacriticalDoubleAcute
˝
DiacriticalGrave
`
DiacriticalTilde
˜
diam
⋄
Diamond
⋄
diamond
⋄
diamondsuit
♦
diams
♦
die
¨
DifferentialD
ⅆ
digamma
ϝ
disin
⋲
div
÷
divide
÷
divideontimes
⋇
divonx
⋇
DJcy
Ђ
djcy
ђ
dlcorn
⌞
dlcrop
⌍
dollar
$
Dopf
𝔻
dopf
𝕕
Dot
¨
dot
˙
DotDot
◌⃜
doteq
≐
doteqdot
≑
DotEqual
≐
dotminus
∸
dotplus
∔
dotsquare
⊡
doublebarwedge
⌆
DoubleContourIntegral
∯
DoubleDot
¨
DoubleDownArrow
⇓
DoubleLeftArrow
⇐
DoubleLeftRightArrow
⇔
DoubleLeftTee
⫤
DoubleLongLeftArrow
⟸
DoubleLongLeftRightArrow
⟺
DoubleLongRightArrow
⟹
DoubleRightArrow
⇒
DoubleRightTee
⊨
DoubleUpArrow
⇑
DoubleUpDownArrow
⇕
DoubleVerticalBar
∥
DownArrow
↓
Downarrow
⇓
downarrow
↓
DownArrowBar
⤓
DownArrowUpArrow
⇵
DownBreve
◌̑
downdownarrows
⇊
downharpoonleft
⇃
downharpoonright
⇂
DownLeftRightVector
⥐
DownLeftTeeVector
⥞
DownLeftVector
↽
DownLeftVectorBar
⥖
DownRightTeeVector
⥟
DownRightVector
⇁
DownRightVectorBar
⥗
DownTee
⊤
DownTeeArrow
↧
drbkarow
⤐
drcorn
⌟
drcrop
⌌
Dscr
𝒟
dscr
𝒹
DScy
Ѕ
dscy
ѕ
dsol
⧶
Dstrok
Đ
dstrok
đ
dtdot
⋱
dtri
▿
dtrif
▾
duarr
⇵
duhar
⥯
dwangle
⦦
DZcy
Џ
dzcy
џ
dzigrarr
⟿
Eacute
É
eacute
é
easter
⩮
Ecaron
Ě
ecaron
ě
ecir
≖
Ecirc
Ê
ecirc
ê
ecolon
≕
Ecy
Э
ecy
э
eDDot
⩷
Edot
Ė
eDot
≑
edot
ė
ee
ⅇ
efDot
≒
Efr
𝔈
efr
𝔢
eg
⪚
Egrave
È
egrave
è
egs
⪖
egsdot
⪘
el
⪙
Element
∈
elinters
⏧
ell
ℓ
els
⪕
elsdot
⪗
Emacr
Ē
emacr
ē
empty
∅
emptyset
∅
EmptySmallSquare
◻
emptyv
∅
EmptyVerySmallSquare
▫
emsp
emsp13
emsp14
ENG
Ŋ
eng
ŋ
ensp
Eogon
Ę
eogon
ę
Eopf
𝔼
eopf
𝕖
epar
⋕
eparsl
⧣
eplus
⩱
epsi
ε
Epsilon
Ε
epsilon
ε
epsiv
ϵ
eqcirc
≖
eqcolon
≕
eqsim
≂
eqslantgtr
⪖
eqslantless
⪕
Equal
⩵
equals
=
EqualTilde
≂
equest
≟
Equilibrium
⇌
equiv
≡
equivDD
⩸
eqvparsl
⧥
erarr
⥱
erDot
≓
Escr
ℰ
escr
ℯ
esdot
≐
Esim
⩳
esim
≂
Eta
Η
eta
η
ETH
Ð
eth
ð
Euml
Ë
euml
ë
euro
€
excl
!
exist
∃
Exists
∃
expectation
ℰ
ExponentialE
ⅇ
exponentiale
ⅇ
fallingdotseq
≒
Fcy
Ф
fcy
ф
female
♀
ffilig
ffi
fflig
ff
ffllig
ffl
Ffr
𝔉
ffr
𝔣
filig
fi
FilledSmallSquare
◼
FilledVerySmallSquare
▪
fjlig
fj
flat
♭
fllig
fl
fltns
▱
fnof
ƒ
Fopf
𝔽
fopf
𝕗
ForAll
∀
forall
∀
fork
⋔
forkv
⫙
Fouriertrf
ℱ
fpartint
⨍
frac12
½
frac13
⅓
frac14
¼
frac15
⅕
frac16
⅙
frac18
⅛
frac23
⅔
frac25
⅖
frac34
¾
frac35
⅗
frac38
⅜
frac45
⅘
frac56
⅚
frac58
⅝
frac78
⅞
frasl
⁄
frown
⌢
Fscr
ℱ
fscr
𝒻
gacute
ǵ
Gamma
Γ
gamma
γ
Gammad
Ϝ
gammad
ϝ
gap
⪆
Gbreve
Ğ
gbreve
ğ
Gcedil
Ģ
Gcirc
Ĝ
gcirc
ĝ
Gcy
Г
gcy
г
Gdot
Ġ
gdot
ġ
gE
≧
ge
≥
gEl
⪌
gel
⋛
geq
≥
geqq
≧
geqslant
⩾
ges
⩾
gescc
⪩
gesdot
⪀
gesdoto
⪂
gesdotol
⪄
gesl
⋛︀
gesles
⪔
Gfr
𝔊
gfr
𝔤
Gg
⋙
gg
≫
ggg
⋙
gimel
ℷ
GJcy
Ѓ
gjcy
ѓ
gl
≷
gla
⪥
glE
⪒
glj
⪤
gnap
⪊
gnapprox
⪊
gnE
≩
gne
⪈
gneq
⪈
gneqq
≩
gnsim
⋧
Gopf
𝔾
gopf
𝕘
grave
`
GreaterEqual
≥
GreaterEqualLess
⋛
GreaterFullEqual
≧
GreaterGreater
⪢
GreaterLess
≷
GreaterSlantEqual
⩾
GreaterTilde
≳
Gscr
𝒢
gscr
ℊ
gsim
≳
gsime
⪎
gsiml
⪐
GT
>
Gt
≫
gt
>
gtcc
⪧
gtcir
⩺
gtdot
⋗
gtlPar
⦕
gtquest
⩼
gtrapprox
⪆
gtrarr
⥸
gtrdot
⋗
gtreqless
⋛
gtreqqless
⪌
gtrless
≷
gtrsim
≳
gvertneqq
≩︀
gvnE
≩︀
Hacek
ˇ
hairsp
half
½
hamilt
ℋ
HARDcy
Ъ
hardcy
ъ
hArr
⇔
harr
↔
harrcir
⥈
harrw
↭
Hat
^
hbar
ℏ
Hcirc
Ĥ
hcirc
ĥ
hearts
♥
heartsuit
♥
hellip
…
hercon
⊹
Hfr
ℌ
hfr
𝔥
HilbertSpace
ℋ
hksearow
⤥
hkswarow
⤦
hoarr
⇿
homtht
∻
hookleftarrow
↩
hookrightarrow
↪
Hopf
ℍ
hopf
𝕙
horbar
―
HorizontalLine
─
Hscr
ℋ
hscr
𝒽
hslash
ℏ
Hstrok
Ħ
hstrok
ħ
HumpDownHump
≎
HumpEqual
≏
hybull
⁃
hyphen
‐
Iacute
Í
iacute
í
ic
Icirc
Î
icirc
î
Icy
И
icy
и
Idot
İ
IEcy
Е
iecy
е
iexcl
¡
iff
⇔
Ifr
ℑ
ifr
𝔦
Igrave
Ì
igrave
ì
ii
ⅈ
iiiint
⨌
iiint
∭
iinfin
⧜
iiota
℩
IJlig
IJ
ijlig
ij
Im
ℑ
Imacr
Ī
imacr
ī
image
ℑ
ImaginaryI
ⅈ
imagline
ℐ
imagpart
ℑ
imath
ı
imof
⊷
imped
Ƶ
Implies
⇒
in
∈
incare
℅
infin
∞
infintie
⧝
inodot
ı
Int
∬
int
∫
intcal
⊺
integers
ℤ
Integral
∫
intercal
⊺
Intersection
⋂
intlarhk
⨗
intprod
⨼
InvisibleComma
InvisibleTimes
IOcy
Ё
iocy
ё
Iogon
Į
iogon
į
Iopf
𝕀
iopf
𝕚
Iota
Ι
iota
ι
iprod
⨼
iquest
¿
Iscr
ℐ
iscr
𝒾
isin
∈
isindot
⋵
isinE
⋹
isins
⋴
isinsv
⋳
isinv
∈
it
Itilde
Ĩ
itilde
ĩ
Iukcy
І
iukcy
і
Iuml
Ï
iuml
ï
Jcirc
Ĵ
jcirc
ĵ
Jcy
Й
jcy
й
Jfr
𝔍
jfr
𝔧
jmath
ȷ
Jopf
𝕁
jopf
𝕛
Jscr
𝒥
jscr
𝒿
Jsercy
Ј
jsercy
ј
Jukcy
Є
jukcy
є
Kappa
Κ
kappa
κ
kappav
ϰ
Kcedil
Ķ
kcedil
ķ
Kcy
К
kcy
к
Kfr
𝔎
kfr
𝔨
kgreen
ĸ
KHcy
Х
khcy
х
KJcy
Ќ
kjcy
ќ
Kopf
𝕂
kopf
𝕜
Kscr
𝒦
kscr
𝓀
lAarr
⇚
Lacute
Ĺ
lacute
ĺ
laemptyv
⦴
lagran
ℒ
Lambda
Λ
lambda
λ
Lang
⟪
lang
⟨
langd
⦑
langle
〈
lap
⪅
Laplacetrf
ℒ
laquo
«
Larr
↞
lArr
⇐
larr
←
larrb
⇤
larrbfs
⤟
larrfs
⤝
larrhk
↩
larrlp
↫
larrpl
⤹
larrsim
⥳
larrtl
↢
lat
⪫
lAtail
⤛
latail
⤙
late
⪭
lates
⪭︀
lBarr
⤎
lbarr
⤌
lbbrk
❲
lbrace
{
lbrack
[
lbrke
⦋
lbrksld
⦏
lbrkslu
⦍
Lcaron
Ľ
lcaron
ľ
Lcedil
Ļ
lcedil
ļ
lceil
⌈
lcub
{
Lcy
Л
lcy
л
ldca
⤶
ldquo
“
ldquor
„
ldrdhar
⥧
ldrushar
⥋
ldsh
↲
lE
≦
le
≤
LeftAngleBracket
〈
LeftArrow
←
Leftarrow
⇐
leftarrow
←
LeftArrowBar
⇤
LeftArrowRightArrow
⇆
leftarrowtail
↢
LeftCeiling
⌈
LeftDoubleBracket
⟦
LeftDownTeeVector
⥡
LeftDownVector
⇃
LeftDownVectorBar
⥙
LeftFloor
⌊
leftharpoondown
↽
leftharpoonup
↼
leftleftarrows
⇇
LeftRightArrow
↔
Leftrightarrow
⇔
leftrightarrow
↔
leftrightarrows
⇆
leftrightharpoons
⇋
leftrightsquigarrow
↭
LeftRightVector
⥎
LeftTee
⊣
LeftTeeArrow
↤
LeftTeeVector
⥚
leftthreetimes
⋋
LeftTriangle
⊲
LeftTriangleBar
⧏
LeftTriangleEqual
⊴
LeftUpDownVector
⥑
LeftUpTeeVector
⥠
LeftUpVector
↿
LeftUpVectorBar
⥘
LeftVector
↼
LeftVectorBar
⥒
lEg
⪋
leg
⋚
leq
≤
leqq
≦
leqslant
⩽
les
⩽
lescc
⪨
lesdot
⩿
lesdoto
⪁
lesdotor
⪃
lesg
⋚︀
lesges
⪓
lessapprox
⪅
lessdot
⋖
lesseqgtr
⋚
lesseqqgtr
⪋
LessEqualGreater
⋚
LessFullEqual
≦
LessGreater
≶
lessgtr
≶
LessLess
⪡
lesssim
≲
LessSlantEqual
⩽
LessTilde
≲
lfisht
⥼
lfloor
⌊
Lfr
𝔏
lfr
𝔩
lg
≶
lgE
⪑
lHar
⥢
lhard
↽
lharu
↼
lharul
⥪
lhblk
▄
LJcy
Љ
ljcy
љ
Ll
⋘
ll
≪
llarr
⇇
llcorner
⌞
Lleftarrow
⇚
llhard
⥫
lltri
◺
Lmidot
Ŀ
lmidot
ŀ
lmoust
⎰
lmoustache
⎰
lnap
⪉
lnapprox
⪉
lnE
≨
lne
⪇
lneq
⪇
lneqq
≨
lnsim
⋦
loang
⟬
loarr
⇽
lobrk
⟦
LongLeftArrow
⟵
Longleftarrow
⟸
longleftarrow
⟵
LongLeftRightArrow
⟷
Longleftrightarrow
⟺
longleftrightarrow
⟷
longmapsto
⟼
LongRightArrow
⟶
Longrightarrow
⟹
longrightarrow
⟶
looparrowleft
↫
looparrowright
↬
lopar
⦅
Lopf
𝕃
lopf
𝕝
loplus
⨭
lotimes
⨴
lowast
∗
lowbar
_
LowerLeftArrow
↙
LowerRightArrow
↘
loz
◊
lozenge
◊
lozf
⧫
lpar
(
lparlt
⦓
lrarr
⇆
lrcorner
⌟
lrhar
⇋
lrhard
⥭
lrm
lrtri
⊿
lsaquo
‹
Lscr
ℒ
lscr
𝓁
Lsh
↰
lsh
↰
lsim
≲
lsime
⪍
lsimg
⪏
lsqb
[
lsquo
‘
lsquor
‚
Lstrok
Ł
lstrok
ł
LT
<
Lt
≪
lt
<
ltcc
⪦
ltcir
⩹
ltdot
⋖
lthree
⋋
ltimes
⋉
ltlarr
⥶
ltquest
⩻
ltri
◃
ltrie
⊴
ltrif
◂
ltrPar
⦖
lurdshar
⥊
luruhar
⥦
lvertneqq
≨︀
lvnE
≨︀
macr
¯
male
♂
malt
✠
maltese
✠
Map
⤅
map
↦
mapsto
↦
mapstodown
↧
mapstoleft
↤
mapstoup
↥
marker
▮
mcomma
⨩
Mcy
М
mcy
м
mdash
—
mDDot
∺
measuredangle
∡
MediumSpace
Mellintrf
ℳ
Mfr
𝔐
mfr
𝔪
mho
℧
micro
µ
mid
∣
midast
*
midcir
⫰
middot
·
minus
−
minusb
⊟
minusd
∸
minusdu
⨪
MinusPlus
∓
mlcp
⫛
mldr
…
mnplus
∓
models
⊧
Mopf
𝕄
mopf
𝕞
mp
∓
Mscr
ℳ
mscr
𝓂
mstpos
∾
Mu
Μ
mu
μ
multimap
⊸
mumap
⊸
nabla
∇
Nacute
Ń
nacute
ń
nang
∠⃒
nap
≉
napE
⩰̸
napid
≋̸
napos
ʼn
napprox
≉
natur
♮
natural
♮
naturals
ℕ
nbsp
nbump
≎̸
nbumpe
≏̸
ncap
⩃
Ncaron
Ň
ncaron
ň
Ncedil
Ņ
ncedil
ņ
ncong
≇
ncongdot
⩭̸
ncup
⩂
Ncy
Н
ncy
н
ndash
–
ne
≠
nearhk
⤤
neArr
⇗
nearr
↗
nearrow
↗
nedot
≐̸
NegativeMediumSpace
NegativeThickSpace
NegativeThinSpace
NegativeVeryThinSpace
nequiv
≢
nesear
⤨
nesim
≂̸
NestedGreaterGreater
≫
NestedLessLess
≪
NewLine
␊
nexist
∄
nexists
∄
Nfr
𝔑
nfr
𝔫
ngE
≧̸
nge
≱
ngeq
≱
ngeqq
≧̸
ngeqslant
⩾̸
nges
⩾̸
nGg
⋙̸
ngsim
≵
nGt
≫⃒
ngt
≯
ngtr
≯
nGtv
≫̸
nhArr
⇎
nharr
↮
nhpar
⫲
ni
∋
nis
⋼
nisd
⋺
niv
∋
NJcy
Њ
njcy
њ
nlArr
⇍
nlarr
↚
nldr
‥
nlE
≦̸
nle
≰
nLeftarrow
⇍
nleftarrow
↚
nLeftrightarrow
⇎
nleftrightarrow
↮
nleq
≰
nleqq
≦̸
nleqslant
⩽̸
nles
⩽̸
nless
≮
nLl
⋘̸
nlsim
≴
nLt
≪⃒
nlt
≮
nltri
⋪
nltrie
⋬
nLtv
≪̸
nmid
∤
NoBreak
NonBreakingSpace
Nopf
ℕ
nopf
𝕟
Not
⫬
not
¬
NotCongruent
≢
NotCupCap
≭
NotDoubleVerticalBar
∦
NotElement
∉
NotEqual
≠
NotEqualTilde
≂̸
NotExists
∄
NotGreater
≯
NotGreaterEqual
≱
NotGreaterFullEqual
≧̸
NotGreaterGreater
≫̸
NotGreaterLess
≹
NotGreaterSlantEqual
⩾̸
NotGreaterTilde
≵
NotHumpDownHump
≎̸
NotHumpEqual
≏̸
notin
∉
notindot
⋵̸
notinE
⋹̸
notinva
∉
notinvb
⋷
notinvc
⋶
NotLeftTriangle
⋪
NotLeftTriangleBar
⧏̸
NotLeftTriangleEqual
⋬
NotLess
≮
NotLessEqual
≰
NotLessGreater
≸
NotLessLess
≪̸
NotLessSlantEqual
⩽̸
NotLessTilde
≴
NotNestedGreaterGreater
⪢̸
NotNestedLessLess
⪡̸
notni
∌
notniva
∌
notnivb
⋾
notnivc
⋽
NotPrecedes
⊀
NotPrecedesEqual
⪯̸
NotPrecedesSlantEqual
⋠
NotReverseElement
∌
NotRightTriangle
⋫
NotRightTriangleBar
⧐̸
NotRightTriangleEqual
⋭
NotSquareSubset
⊏̸
NotSquareSubsetEqual
⋢
NotSquareSuperset
⊐̸
NotSquareSupersetEqual
⋣
NotSubset
⊂⃒
NotSubsetEqual
⊈
NotSucceeds
⊁
NotSucceedsEqual
⪰̸
NotSucceedsSlantEqual
⋡
NotSucceedsTilde
≿̸
NotSuperset
⊃⃒
NotSupersetEqual
⊉
NotTilde
≁
NotTildeEqual
≄
NotTildeFullEqual
≇
NotTildeTilde
≉
NotVerticalBar
∤
npar
∦
nparallel
∦
nparsl
⫽⃥
npart
∂̸
npolint
⨔
npr
⊀
nprcue
⋠
npre
⪯̸
nprec
⊀
npreceq
⪯̸
nrArr
⇏
nrarr
↛
nrarrc
⤳̸
nrarrw
↝̸
nRightarrow
⇏
nrightarrow
↛
nrtri
⋫
nrtrie
⋭
nsc
⊁
nsccue
⋡
nsce
⪰̸
Nscr
𝒩
nscr
𝓃
nshortmid
∤
nshortparallel
∦
nsim
≁
nsime
≄
nsimeq
≄
nsmid
∤
nspar
∦
nsqsube
⋢
nsqsupe
⋣
nsub
⊄
nsubE
⫅̸
nsube
⊈
nsubset
⊂⃒
nsubseteq
⊈
nsubseteqq
⫅̸
nsucc
⊁
nsucceq
⪰̸
nsup
⊅
nsupE
⫆̸
nsupe
⊉
nsupset
⊃⃒
nsupseteq
⊉
nsupseteqq
⫆̸
ntgl
≹
Ntilde
Ñ
ntilde
ñ
ntlg
≸
ntriangleleft
⋪
ntrianglelefteq
⋬
ntriangleright
⋫
ntrianglerighteq
⋭
Nu
Ν
nu
ν
num
#
numero
№
numsp
nvap
≍⃒
nVDash
⊯
nVdash
⊮
nvDash
⊭
nvdash
⊬
nvge
≥⃒
nvgt
>⃒
nvHarr
⤄
nvinfin
⧞
nvlArr
⤂
nvle
≤⃒
nvlt
<⃒
nvltrie
⊴⃒
nvrArr
⤃
nvrtrie
⊵⃒
nvsim
∼⃒
nwarhk
⤣
nwArr
⇖
nwarr
↖
nwarrow
↖
nwnear
⤧
Oacute
Ó
oacute
ó
oast
⊛
ocir
⊚
Ocirc
Ô
ocirc
ô
Ocy
О
ocy
о
odash
⊝
Odblac
Ő
odblac
ő
odiv
⨸
odot
⊙
odsold
⦼
OElig
Œ
oelig
œ
ofcir
⦿
Ofr
𝔒
ofr
𝔬
ogon
˛
Ograve
Ò
ograve
ò
ogt
⧁
ohbar
⦵
ohm
Ω
oint
∮
olarr
↺
olcir
⦾
olcross
⦻
oline
‾
olt
⧀
Omacr
Ō
omacr
ō
Omega
Ω
omega
ω
Omicron
Ο
omicron
ο
omid
⦶
ominus
⊖
Oopf
𝕆
oopf
𝕠
opar
⦷
OpenCurlyDoubleQuote
“
OpenCurlyQuote
‘
operp
⦹
oplus
⊕
Or
⩔
or
∨
orarr
↻
ord
⩝
order
ℴ
orderof
ℴ
ordf
ª
ordm
º
origof
⊶
oror
⩖
orslope
⩗
orv
⩛
oS
Ⓢ
Oscr
𝒪
oscr
ℴ
Oslash
Ø
oslash
ø
osol
⊘
Otilde
Õ
otilde
õ
Otimes
⨷
otimes
⊗
otimesas
⨶
Ouml
Ö
ouml
ö
ovbar
⌽
OverBar
‾
OverBrace
⏞
OverBracket
⎴
OverParenthesis
⏜
par
∥
para
¶
parallel
∥
parsim
⫳
parsl
⫽
part
∂
PartialD
∂
Pcy
П
pcy
п
percnt
%
period
.
permil
‰
perp
⊥
pertenk
‱
Pfr
𝔓
pfr
𝔭
Phi
Φ
phi
φ
phiv
ϕ
phmmat
ℳ
phone
☎
Pi
Π
pi
π
pitchfork
⋔
piv
ϖ
planck
ℏ
planckh
ℎ
plankv
ℏ
plus
+
plusacir
⨣
plusb
⊞
pluscir
⨢
plusdo
∔
plusdu
⨥
pluse
⩲
PlusMinus
±
plusmn
±
plussim
⨦
plustwo
⨧
pm
±
Poincareplane
ℌ
pointint
⨕
Popf
ℙ
popf
𝕡
pound
£
Pr
⪻
pr
≺
prap
⪷
prcue
≼
prE
⪳
pre
⪯
prec
≺
precapprox
⪷
preccurlyeq
≼
Precedes
≺
PrecedesEqual
⪯
PrecedesSlantEqual
≼
PrecedesTilde
≾
preceq
⪯
precnapprox
⪹
precneqq
⪵
precnsim
⋨
precsim
≾
Prime
″
prime
′
primes
ℙ
prnap
⪹
prnE
⪵
prnsim
⋨
prod
∏
Product
∏
profalar
⌮
profline
⌒
profsurf
⌓
prop
∝
Proportion
∷
Proportional
∝
propto
∝
prsim
≾
prurel
⊰
Pscr
𝒫
pscr
𝓅
Psi
Ψ
psi
ψ
puncsp
Qfr
𝔔
qfr
𝔮
qint
⨌
Qopf
ℚ
qopf
𝕢
qprime
⁗
Qscr
𝒬
qscr
𝓆
quaternions
ℍ
quatint
⨖
quest
?
questeq
≟
QUOT
"
quot
"
rAarr
⇛
race
∽̱
Racute
Ŕ
racute
ŕ
radic
√
raemptyv
⦳
Rang
⟫
rang
⟩
rangd
⦒
range
⦥
rangle
〉
raquo
»
Rarr
↠
rArr
⇒
rarr
→
rarrap
⥵
rarrb
⇥
rarrbfs
⤠
rarrc
⤳
rarrfs
⤞
rarrhk
↪
rarrlp
↬
rarrpl
⥅
rarrsim
⥴
Rarrtl
⤖
rarrtl
↣
rarrw
↝
rAtail
⤜
ratail
⤚
ratio
∶
rationals
ℚ
RBarr
⤐
rBarr
⤏
rbarr
⤍
rbbrk
❳
rbrace
}
rbrack
]
rbrke
⦌
rbrksld
⦎
rbrkslu
⦐
Rcaron
Ř
rcaron
ř
Rcedil
Ŗ
rcedil
ŗ
rceil
⌉
rcub
}
Rcy
Р
rcy
р
rdca
⤷
rdldhar
⥩
rdquo
”
rdquor
”
rdsh
↳
Re
ℜ
real
ℜ
realine
ℛ
realpart
ℜ
reals
ℝ
rect
▭
REG
®
reg
®
ReverseElement
∋
ReverseEquilibrium
⇋
ReverseUpEquilibrium
⥯
rfisht
⥽
rfloor
⌋
Rfr
ℜ
rfr
𝔯
rHar
⥤
rhard
⇁
rharu
⇀
rharul
⥬
Rho
Ρ
rho
ρ
rhov
ϱ
RightAngleBracket
〉
RightArrow
→
Rightarrow
⇒
rightarrow
→
RightArrowBar
⇥
RightArrowLeftArrow
⇄
rightarrowtail
↣
RightCeiling
⌉
RightDoubleBracket
⟧
RightDownTeeVector
⥝
RightDownVector
⇂
RightDownVectorBar
⥕
RightFloor
⌋
rightharpoondown
⇁
rightharpoonup
⇀
rightleftarrows
⇄
rightleftharpoons
⇌
rightrightarrows
⇉
rightsquigarrow
↝
RightTee
⊢
RightTeeArrow
↦
RightTeeVector
⥛
rightthreetimes
⋌
RightTriangle
⊳
RightTriangleBar
⧐
RightTriangleEqual
⊵
RightUpDownVector
⥏
RightUpTeeVector
⥜
RightUpVector
↾
RightUpVectorBar
⥔
RightVector
⇀
RightVectorBar
⥓
ring
˚
risingdotseq
≓
rlarr
⇄
rlhar
⇌
rlm
rmoust
⎱
rmoustache
⎱
rnmid
⫮
roang
⟭
roarr
⇾
robrk
⟧
ropar
⦆
Ropf
ℝ
ropf
𝕣
roplus
⨮
rotimes
⨵
RoundImplies
⥰
rpar
)
rpargt
⦔
rppolint
⨒
rrarr
⇉
Rrightarrow
⇛
rsaquo
›
Rscr
ℛ
rscr
𝓇
Rsh
↱
rsh
↱
rsqb
]
rsquo
’
rsquor
’
rthree
⋌
rtimes
⋊
rtri
▹
rtrie
⊵
rtrif
▸
rtriltri
⧎
RuleDelayed
⧴
ruluhar
⥨
rx
℞
Sacute
Ś
sacute
ś
sbquo
‚
Sc
⪼
sc
≻
scap
⪸
Scaron
Š
scaron
š
sccue
≽
scE
⪴
sce
⪰
Scedil
Ş
scedil
ş
Scirc
Ŝ
scirc
ŝ
scnap
⪺
scnE
⪶
scnsim
⋩
scpolint
⨓
scsim
≿
Scy
С
scy
с
sdot
⋅
sdotb
⊡
sdote
⩦
searhk
⤥
seArr
⇘
searr
↘
searrow
↘
sect
§
semi
;
seswar
⤩
setminus
∖
setmn
∖
sext
✶
Sfr
𝔖
sfr
𝔰
sfrown
⌢
sharp
♯
SHCHcy
Щ
shchcy
щ
SHcy
Ш
shcy
ш
ShortDownArrow
↓
ShortLeftArrow
←
shortmid
∣
shortparallel
∥
ShortRightArrow
→
ShortUpArrow
↑
shy
Sigma
Σ
sigma
σ
sigmaf
ς
sigmav
ς
sim
∼
simdot
⩪
sime
≃
simeq
≃
simg
⪞
simgE
⪠
siml
⪝
simlE
⪟
simne
≆
simplus
⨤
simrarr
⥲
slarr
←
SmallCircle
∘
smallsetminus
∖
smashp
⨳
smeparsl
⧤
smid
∣
smile
⌣
smt
⪪
smte
⪬
smtes
⪬︀
SOFTcy
Ь
softcy
ь
sol
/
solb
⧄
solbar
⌿
Sopf
𝕊
sopf
𝕤
spades
♠
spadesuit
♠
spar
∥
sqcap
⊓
sqcaps
⊓︀
sqcup
⊔
sqcups
⊔︀
Sqrt
√
sqsub
⊏
sqsube
⊑
sqsubset
⊏
sqsubseteq
⊑
sqsup
⊐
sqsupe
⊒
sqsupset
⊐
sqsupseteq
⊒
squ
□
Square
□
square
□
SquareIntersection
⊓
SquareSubset
⊏
SquareSubsetEqual
⊑
SquareSuperset
⊐
SquareSupersetEqual
⊒
SquareUnion
⊔
squarf
▪
squf
▪
srarr
→
Sscr
𝒮
sscr
𝓈
ssetmn
∖
ssmile
⌣
sstarf
⋆
Star
⋆
star
☆
starf
★
straightepsilon
ϵ
straightphi
ϕ
strns
¯
Sub
⋐
sub
⊂
subdot
⪽
subE
⫅
sube
⊆
subedot
⫃
submult
⫁
subnE
⫋
subne
⊊
subplus
⪿
subrarr
⥹
Subset
⋐
subset
⊂
subseteq
⊆
subseteqq
⫅
SubsetEqual
⊆
subsetneq
⊊
subsetneqq
⫋
subsim
⫇
subsub
⫕
subsup
⫓
succ
≻
succapprox
⪸
succcurlyeq
≽
Succeeds
≻
SucceedsEqual
⪰
SucceedsSlantEqual
≽
SucceedsTilde
≿
succeq
⪰
succnapprox
⪺
succneqq
⪶
succnsim
⋩
succsim
≿
SuchThat
∋
Sum
∑
sum
∑
sung
♪
Sup
⋑
sup
⊃
sup1
¹
sup2
²
sup3
³
supdot
⪾
supdsub
⫘
supE
⫆
supe
⊇
supedot
⫄
Superset
⊃
SupersetEqual
⊇
suphsol
⟉
suphsub
⫗
suplarr
⥻
supmult
⫂
supnE
⫌
supne
⊋
supplus
⫀
Supset
⋑
supset
⊃
supseteq
⊇
supseteqq
⫆
supsetneq
⊋
supsetneqq
⫌
supsim
⫈
supsub
⫔
supsup
⫖
swarhk
⤦
swArr
⇙
swarr
↙
swarrow
↙
swnwar
⤪
szlig
ß
Tab
␉
target
⌖
Tau
Τ
tau
τ
tbrk
⎴
Tcaron
Ť
tcaron
ť
Tcedil
Ţ
tcedil
ţ
Tcy
Т
tcy
т
tdot
◌⃛
telrec
⌕
Tfr
𝔗
tfr
𝔱
there4
∴
Therefore
∴
therefore
∴
Theta
Θ
theta
θ
thetasym
ϑ
thetav
ϑ
thickapprox
≈
thicksim
∼
ThickSpace
thinsp
ThinSpace
thkap
≈
thksim
∼
THORN
Þ
thorn
þ
Tilde
∼
tilde
˜
TildeEqual
≃
TildeFullEqual
≅
TildeTilde
≈
times
×
timesb
⊠
timesbar
⨱
timesd
⨰
tint
∭
toea
⤨
top
⊤
topbot
⌶
topcir
⫱
Topf
𝕋
topf
𝕥
topfork
⫚
tosa
⤩
tprime
‴
TRADE
™
trade
™
triangle
▵
triangledown
▿
triangleleft
◃
trianglelefteq
⊴
triangleq
≜
triangleright
▹
trianglerighteq
⊵
tridot
◬
trie
≜
triminus
⨺
TripleDot
◌⃛
triplus
⨹
trisb
⧍
tritime
⨻
trpezium
⏢
Tscr
𝒯
tscr
𝓉
TScy
Ц
tscy
ц
TSHcy
Ћ
tshcy
ћ
Tstrok
Ŧ
tstrok
ŧ
twixt
≬
twoheadleftarrow
↞
twoheadrightarrow
↠
Uacute
Ú
uacute
ú
Uarr
↟
uArr
⇑
uarr
↑
Uarrocir
⥉
Ubrcy
Ў
ubrcy
ў
Ubreve
Ŭ
ubreve
ŭ
Ucirc
Û
ucirc
û
Ucy
У
ucy
у
udarr
⇅
Udblac
Ű
udblac
ű
udhar
⥮
ufisht
⥾
Ufr
𝔘
ufr
𝔲
Ugrave
Ù
ugrave
ù
uHar
⥣
uharl
↿
uharr
↾
uhblk
▀
ulcorn
⌜
ulcorner
⌜
ulcrop
⌏
ultri
◸
Umacr
Ū
umacr
ū
uml
¨
UnderBar
_
UnderBrace
⏟
UnderBracket
⎵
UnderParenthesis
⏝
Union
⋃
UnionPlus
⊎
Uogon
Ų
uogon
ų
Uopf
𝕌
uopf
𝕦
UpArrow
↑
Uparrow
⇑
uparrow
↑
UpArrowBar
⤒
UpArrowDownArrow
⇅
UpDownArrow
↕
Updownarrow
⇕
updownarrow
↕
UpEquilibrium
⥮
upharpoonleft
↿
upharpoonright
↾
uplus
⊎
UpperLeftArrow
↖
UpperRightArrow
↗
Upsi
ϒ
upsi
υ
upsih
ϒ
Upsilon
Υ
upsilon
υ
UpTee
⊥
UpTeeArrow
↥
upuparrows
⇈
urcorn
⌝
urcorner
⌝
urcrop
⌎
Uring
Ů
uring
ů
urtri
◹
Uscr
𝒰
uscr
𝓊
utdot
⋰
Utilde
Ũ
utilde
ũ
utri
▵
utrif
▴
uuarr
⇈
Uuml
Ü
uuml
ü
uwangle
⦧
vangrt
⦜
varepsilon
ϵ
varkappa
ϰ
varnothing
∅
varphi
ϕ
varpi
ϖ
varpropto
∝
vArr
⇕
varr
↕
varrho
ϱ
varsigma
ς
varsubsetneq
⊊︀
varsubsetneqq
⫋︀
varsupsetneq
⊋︀
varsupsetneqq
⫌︀
vartheta
ϑ
vartriangleleft
⊲
vartriangleright
⊳
Vbar
⫫
vBar
⫨
vBarv
⫩
Vcy
В
vcy
в
VDash
⊫
Vdash
⊩
vDash
⊨
vdash
⊢
Vdashl
⫦
Vee
⋁
vee
∨
veebar
⊻
veeeq
≚
vellip
⋮
Verbar
‖
verbar
|
Vert
‖
vert
|
VerticalBar
∣
VerticalLine
|
VerticalSeparator
❘
VerticalTilde
≀
VeryThinSpace
Vfr
𝔙
vfr
𝔳
vltri
⊲
vnsub
⊂⃒
vnsup
⊃⃒
Vopf
𝕍
vopf
𝕧
vprop
∝
vrtri
⊳
Vscr
𝒱
vscr
𝓋
vsubnE
⫋︀
vsubne
⊊︀
vsupnE
⫌︀
vsupne
⊋︀
Vvdash
⊪
vzigzag
⦚
Wcirc
Ŵ
wcirc
ŵ
wedbar
⩟
Wedge
⋀
wedge
∧
wedgeq
≙
weierp
℘
Wfr
𝔚
wfr
𝔴
Wopf
𝕎
wopf
𝕨
wp
℘
wr
≀
wreath
≀
Wscr
𝒲
wscr
𝓌
xcap
⋂
xcirc
◯
xcup
⋃
xdtri
▽
Xfr
𝔛
xfr
𝔵
xhArr
⟺
xharr
⟷
Xi
Ξ
xi
ξ
xlArr
⟸
xlarr
⟵
xmap
⟼
xnis
⋻
xodot
⨀
Xopf
𝕏
xopf
𝕩
xoplus
⨁
xotime
⨂
xrArr
⟹
xrarr
⟶
Xscr
𝒳
xscr
𝓍
xsqcup
⨆
xuplus
⨄
xutri
△
xvee
⋁
xwedge
⋀
Yacute
Ý
yacute
ý
YAcy
Я
yacy
я
Ycirc
Ŷ
ycirc
ŷ
Ycy
Ы
ycy
ы
yen
¥
Yfr
𝔜
yfr
𝔶
YIcy
Ї
yicy
ї
Yopf
𝕐
yopf
𝕪
Yscr
𝒴
yscr
𝓎
YUcy
Ю
yucy
ю
Yuml
Ÿ
yuml
ÿ
Zacute
Ź
zacute
ź
Zcaron
Ž
zcaron
ž
Zcy
З
zcy
з
Zdot
Ż
zdot
ż
zeetrf
ℨ
ZeroWidthSpace
Zeta
Ζ
zeta
ζ
Zfr
ℨ
zfr
𝔷
ZHcy
Ж
zhcy
ж
zigrarr
⇝
Zopf
ℤ
zopf
𝕫
Zscr
𝒵
zscr
𝓏
zwj
zwnj