WolframLang: FullForm vs Short Syntax Example
This page shows real life code example of FullForm Syntax vs short syntax.
Example 1
Short syntax:
cArray = CoordinateBoundsArray[{{-1, 1}, {-1, 1}}, Into[4]]; hLines = (BlockMap[Line, #1, 2, 1] & ) /@ cArray
FullForm syntax:
CompoundExpression[ Set[ cArray, CoordinateBoundsArray[ List[List[-1, 1], List[-1, 1]], Into[4] ] ], Set[ hLines, Map[ Function[ BlockMap[Line, Slot[1], 2, 1] ], cArray ] ] ]
Example 2
short syntax:
geoInv = ((With[{x662 = #.#}, If[ x662 < 0.00000001, #, #/x662] ]) &); gridDivN = 16; nGon = 4; rr = (2/gridDivN)/2 (Sqrt@2) .7; \[Alpha] = 2 Pi/8; gridPoints = Map[geoInv, CoordinateBoundsArray[{{-1, 1}, {-1, 1}}, Into@gridDivN], {2}]; gp1 = With[{sq = ((({Cos[#], Sin[#]} rr) &) /@ Range[\[Alpha], 2 \[Pi] + \[Alpha] - 2 \[Pi]/nGon/2, 2 \[Pi]/nGon])}, Map[Function[{x}, GraphicsComplex[((x + #) &) /@ (sq x . x), Line@Append[Range@nGon, 1]]], gridPoints, {2}]]; gp2 = gp1 /. GraphicsComplex[x_, r__] :> GraphicsComplex[geoInv /@ x, r]; gr1 = Graphics[gp1, Axes -> True]; gr2 = Graphics[gp2, Axes -> True]; GraphicsGrid[{{gr1, gr2}}]
FullForm syntax:
CompoundExpression[ Set[geoInv, Function[With[List[Set[x662, Dot[Slot[1], Slot[1]]]], If[Less[x662, 1.`*^-8], Slot[1], Times[Slot[1], Power[x662, -1]]]]]], Set[gridDivN, 16], Set[nGon, 4], Set[rr, Times[Times[Times[2, Power[gridDivN, -1]], Power[2, -1]], Sqrt[2], 0.7`]], Set[\[Alpha], Times[2, Times[Pi, Power[8, -1]]]], Set[gridPoints, Map[geoInv, CoordinateBoundsArray[List[List[-1, 1], List[-1, 1]], Into[gridDivN]], List[2]]], Set[gp1, With[ List[Set[sq, Map[Function[Times[List[Cos[Slot[1]], Sin[Slot[1]]], rr]], Range[\[Alpha], Plus[Times[2, Pi], \[Alpha], Times[-1, Times[2, Times[Times[Pi, Power[nGon, -1]], Power[2, -1]]]]], Times[2, Times[Pi, Power[nGon, -1]]]]]]], Map[Function[List[x], GraphicsComplex[ Map[Function[Plus[x, Slot[1]]], Times[sq, Dot[x, x]]], Line[Append[Range[nGon], 1]]]], gridPoints, List[2]]]], Set[gp2, ReplaceAll[gp1, RuleDelayed[ GraphicsComplex[Pattern[x, Blank[]], Pattern[r, BlankSequence[]]], GraphicsComplex[Map[geoInv, x], r]]]], Set[gr1, Graphics[gp1, Rule[Axes, True]]], Set[gr2, Graphics[gp2, Rule[Axes, True]]], GraphicsGrid[List[List[gr1, gr2]]]]