Wolfram: List Combinatorics
Tuples
-
Tuples[ list, n]
- and more
return all possible n-tuples.
Tuples[ {1,2,3}, 2] (* {{1, 1}, {1, 2}, {1, 3}, {2, 1}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3}} *)
Subsets
-
Subsets[list]
→ all subsets.Subsets[list, n]
→ max subset length n.Subsets[list, {n}]
→ subset length exactly n.Subsets[list, {n, m}]
→ subset length n to m.Subsets[list, spec, s]
→ first s subsets.
return all possible subsets
Subsets[{1,2,3}] (* {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} *) (* max length n in each subset. *) Subsets[{1,2,3}, 2] (* {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}} *) (* exact length n in each subset. *) Subsets[{1,2,3}, {2}] (* {{1, 2}, {1, 3}, {2, 3}} *) (* length n to m in each subset. *) Subsets[{1,2,3}, {2,3}] (* {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} *) (* just first 4 subsets. *) Subsets[{1,2,3}, 2, 5] (* {{}, {1}, {2}, {3}, {1, 2}} *)
Permutations
WolframLang List Operations
- Wolfram: List Operations
- Wolfram: Create List (Table)
- Wolfram: Create Flat List (Range)
- Wolfram: Get Parts of List
- Wolfram: Add Element to List
- Wolfram: Delete Element in List
- Wolfram: Change Element in List
- Wolfram: Check Item Exist in List
- Wolfram: Filter List
- Wolfram: Sort, Reverse, Order
- Wolfram: List Reshape (split, group, flatten, transpose)
- Wolfram: List. Count, Group, Similar Items
- Wolfram: List Combinatorics
- Wolfram: List Join, Union, Intersection, Difference