Wolfram: Compose Transformations
Composition of Transformations
Composition[a,b,c,etc]
-
🔸 SHORT SYNTAX:
a @* b @* c @* etc
Return the composition of functions. The application order is right to left.
Composition[a,b,c] (* a @* b @* c *) Composition[a,b,c][x] (* a[b[c[x]]] *)
Example: Composition of Transformations
(* show the input and output of transform functions. and composition on them. *) RotationTransform[10 Degree ] (* TransformationFunction[{{Cos[10*Degree], -Sin[10*Degree], 0}, {Sin[10*Degree], Cos[10*Degree], 0}, {0, 0, 1}}] *) RotationTransform[10 Degree ][{a,b}] (* {a*Cos[10*Degree] - b*Sin[10*Degree], b*Cos[10*Degree] + a*Sin[10*Degree]} *) (* HHHH------------------------------ *) TranslationTransform[ {1,0} ] (* TransformationFunction[{{1, 0, 1}, {0, 1, 0}, {0, 0, 1}}] *) TranslationTransform[ {1,0} ][{a,b}] (* {1 + a, b} *) (* HHHH------------------------------ *) Composition[ RotationTransform[10 Degree ], TranslationTransform[ {1,0} ] ] (* TransformationFunction[{{Cos[10*Degree], -Sin[10*Degree], Cos[10*Degree]}, {Sin[10*Degree], Cos[10*Degree], Sin[10*Degree]}, {0, 0, 1}}] *) Composition[ RotationTransform[10 Degree ], TranslationTransform[ {1,0} ] ][{a,b}] (* {Cos[10*Degree] + a*Cos[10*Degree] - b*Sin[10*Degree], b*Cos[10*Degree] + Sin[10*Degree] + a*Sin[10*Degree]} *)
Wolfram. Graphics Programing
- Wolfram: Graphics Programing Index
- Wolfram: Graphics Primitive
- Wolfram: Graphics, Graphics3D
- Wolfram: Graphics Directive
- Wolfram: Geometric Transformation Functions
- Wolfram: Apply Transform to Graphics
- Wolfram: Compose Transformations
- Wolfram: Translate Copy Graphics
- Wolfram: Transformation Matrix
- Wolfram: GraphicsComplex
- Wolfram: Mesh Region
- Wolfram: Mesh Region Examples
- Wolfram: Extract Graphics from Plot Functions
- Wolfram: Graphics Misc
- Wolfram: Animation